
ABSTRACT
In this paper, a number theoretical method is developed for
the purpose of analyzing the spectre of a mixture of har-
monic sounds. The method is based on the properties of
prime numbers and on non-linear filtering. It is shown that a
number theoretical approach is of vital importance in order
to detect and observe harmonic sounds in musical polypho-
nies. The method is verified by applying it to the automatic
transcription of piano music.

1   INTRODUCTION
Multiple fundamental frequency tracking is an almost unex-
plored area of research, although in the moniphonic case
several algorithms have been proposed that are robust, com-
mercially applicable and operate in real time. Some pub-
lished efforts towards multipitch tracking have been made in
the field of automatic transcription of music [1,2]. Until
these days, however, the performance of the transcription
systems has been very limited in polyphonic signals.

We will discuss the spectral properties of a mixture of
harmonic sounds and demonstrate why single pitch tracking
algorithms are not appropriate as such for use in polyphonic
signals. Then we attempt to establish a number theoretical
method to detect and observe harmonic sounds in poly-
phonic signals. This does not only concern multiple funda-
mental frequency tracking, but observing any of the features
of harmonic sounds in polyphonic signals.

2 FEATURE OF A SOUND
A harmonic sound consists of a series of frequency partials,
harmonics. They appear as peaks in the frequency spectrum
at constant frequency intervalsf0, with the lowest partial at
frequencyf0, which is therefore called the fundamental fre-
quency of the sound.

We denote harmonic sounds with uppercase lettersS and
R. These are used consistently in such roles that soundS is
being observed in the interference (presence) of a soundR,
or Ri , if there are several interfering sounds. We denote the
harmonic partials of a sound byhj, where . Braces are
used to denotesets, thus {hj} being a set of harmonics.

Further, we denote byg(x) afeature of x, wherex can be a
soundS, or its single harmonic partialhj. We will separate
the different features by subscript characters, for example
gF(x), gL(x) andgT(x) refeffing to the frequency, loudness,
and onset time ofx, respectively. Because the very sub-
stance of a harmonic sound is its series of equidistant sinu-
soid partials, any observation of a harmonic sound must rely

j 1≥

on its harmonic partials, no matter if it is made in time or in
frequency domain.

3   BASIC PROBLEM IN RESOLVING A MIXTURE
OF HARMONIC SOUNDS

There are several good methods for measuring the fre-
quency and amplitude contours and phases of the sinusoid
partials in a signal [3,4,5]. Separating amixture of harmonic
sounds is problematic for two specific reasons.
1. It is most difficult to organize sinusoid partials to their

due fundamental frequencies, because most often the har-
monic series of different sounds extend to common fre-
quency bands.

2. The amplitude envelopes and phases of two sinusoids can
no more be deduced from their sum, if theyoverlap, i.e.
share the same frequency.

Proposition 1. If any harmonic of a soundS is over-

lapped by any harmonic  of an interfering soundR, then

the fundamental frequency of the soundR must be

, wherem andn are positive integer numbers.

Proof. The condition of a harmonic of a soundS to
be overlapped by a harmonic  of an interfering soundR
can be expressed as

. (1)

When the common factors ofj andi are reduced, this can be
expressed as

, (2)

where  and can be calculated from the integersi
andj. ❑

Proposition 2. If the fundamental frequencies of two har-

monic soundsS and R are f0S and , respec-

tively, then everynth harmonic  of the soundR overlaps

everymth harmonic  of the soundS, where integer .

Proof. Substituting (2) to (1) we can rewrite the condi-
tion of a harmonichj of a soundS to be overlapped by a har-
monichi of an interfering soundR as

,
which is true for each pair i=nk and j=mk, where .❑

It is easy to see that ifm=1 in equation 2,R overlaps all
the harmonics ofS at their common frequency bands. In this
case, detecting and observingS is difficult and even theoret-
ically ambiguous. This case will be separately discussed.
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4   CERTAIN PRINCIPLES IN WESTERN MUSIC
An important principle governing music is paying attention
to the frequency relations, intervals, of simultaneously
played notes. Two notes are in a harmonic relation to each
other if their fundamental frequencies satisfy

, (3)

wherem andn are small integers. The smaller the values of
m andn are, the closer is the harmonic relation of the two
sounds and the more perfectly they play together.

Western music arranges notes to a quantized logarithmic
scale, where the fundamental frequency of a notek is

Hz, and  in a standard piano
keyboard, for example. Although the scale is logarithmic, it
can surprisingly well produce the different harmonic inter-
vals that can be derived from Equation (3) by substituting
small integers tom andn. The realizable musical intervals
deviate a little from their ideals, but the amount of error is so
little that it practically does not disturb the human ear. More-
over, for a feasible frequency analysis resolution, the over-
lapping of the harmonics of the two sounds is the same as if
the harmonic relation were perfect.

For instance, the fundamental frequencies of the notes in
a basicmajor chord are in 4 : 5 : 6 relations to each other.
Based on the proposition 2, 47%, 33% and 60% of the har-
monic partials of the notes are overlapped by the other two
notes in the chord. In this case, 60% of the partials of the
third note would be found from the signal even in its
absence. This demonstrates why the algorithms that have
been designed for the detection and observation of a single
harmonic sound cannot be straightforwardly applied to
resolving polyhonic musical contents. Instead, we need to
rethink the very kernel, how to collect the information of a
sound from its harmonics.

5   PRIME NUMBER HARMONICS
Prime number harmonics {h1, h2, h3, h5, h7,...} of a sound
share a desired common property that is derived from the
very definition of the prime numbers: they are divisible only
by one and themselves. This has an important consequence,
which will give a steadfast starting point in organizing fre-
quency partials to their due fundamental frequencies.

Proposition 3.Any harmonic soundR can overlap only one

prime number harmonic of a soundS, provided that the fun-

damental frequency ofR is not , where integer

. If R overlaps two prime number harmonics ofS, it

overlaps all the harmonics ofS, and its fundamental fre-

quency is in the mentioned relation toS.

Proof. This can be proved by assuming that two prime

number harmonics ofS are overlapped by the harmonics of

R and showing that in this case , where ,

and the soundR overlaps all the harmonics of the soundS.

Let f0S and f0R be the fundamental frequencies of the
soundsS andR, respectively. We denote an arbitrary prime
number bypi. The condition of two prime number harmon-
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ics of S being overlapped by any harmonicshj of R can be
expressed as

, (4)

wherep2 can be solved as

.
In order forp2 to be a prime number and not equal top1 , i1
must satisfy

, (5)

wheren is an integer and implies
.

Substituting (5) to (4) we get

, (6)

where .❑
If Equation 6 holds, all  the harmonics ofS are over-

lapped by everynth harmonic ofR, based on proposition 2.

6   DEALING WITH OUTLIER VALUES
Let us denote the set of prime harmonics by {hp | p is
prime}, and the set of the features of the prime harmonics by
{ g(hp) | p is prime}, where the type of the feature is not yet
fixed. Based on proposition 3, prime number harmonics of a
soundS can be considered as independent pieces of evi-
dence for the existence of the soundS, or for any of its fea-
tures that can be deduced from its harmonics.

In the set of representative features {g(hp) | p is prime}
there are two kinds ofoutliers, i.e., irrelevant values in
respect of the true featureg(S) of the sound. Some prime
harmonics have been disturbed by interfering sounds, while
others may be totally lacking fromS. Those values that are
not outliers vary somewhat in value, but outliers are single,
clearly deviated values, and invalid to represent the true fea-
ture ofS. However, a majority of the representatives should
be reliable, it being unprobable that a majority of the prime
number harmonics would be either missing or each cor-
rupted by an independent interfering sound.

This is the motivation for the design of a filter which
would pick the estimated feature  from the set of inde-
pendent representatives {g(hp) | p is prime} and drop out the
irrelevant values. The class of median and order statistic fil-
ters is prompted by the fact that they are particularly effec-
tive in dealing with the kind of data that was characterized
above. These filters depend onsorting the set of representa-
tives. Under or overestimated outlier values map to the both
ends of the sorted set, and in between, the reliable samples
are sorted from the smallest up to the largest value. Thus a
trivial way to estimate a feature of a sound would be

= median{ g(hp) | p is prime}. (7)
Weighted order statistic (WOS) filters are defined in [7].
They allow convenient tailoring of the filter’s sample selec-
tion probabilities. Thej th sample selection probabilityis the
probability that the samplehj in a set {hj} is selected to be
the output of the filter [8]. We denote the sample selection
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probabilities of a filter byPs(j).

7   GENERALIZATION OF THE RESULT
A still remaining shortcoming of the proposed procedure is
that it utilizes only the prime number harmonics. This
degrades the usability of the algorithm and makes it sensi-
tive to the tonal content of a sound. We proceed towards a
model where this defect is removed but the advantages of
the set of prime number harmonics are preserved.

We denote byv a WOS filter that picks the estimated fea-
ture of a sound from the set of features of its harmonics.
This can be written as

. (8)

Further, we denote by , , a set which con-
tains everymth harmonic of a sound, starting from harmonic
m. In Proposition 2 we proved that if an interfering soundR
overlaps a harmonic of an observing sound, it overlaps
everymth harmonic of it, i.e., exactly the subsetEm.

The requirements of the filterv can now be exactly
expressed as follows. Given a numberN of interfering
sounds, they should together contribute only up to a limited
probabilityλ that a corrupted harmonic is chosen to the out-
put ofv. At the same time, the filter should utilize all the har-
monics of the observed sound as equally as possible to make
it applicable and robust to different kinds of sounds.

These requirements can be achieved by finding sample
selection probabilitiesPs(j) for the filterv so that the selec-
tion probabilities of theN largest subsetsEm together sum
up to the given limit probabilityλ. N largest sets that are not
subsets of each other are the prime sets {Em | m=2,3,5,7...}.
E1 is excluded since the case of all harmonics being over-
lapped will be discussed separately. IfN is set to 1 this can
be expressed as findingPs(j) in a minimizing problem

, (9)

whereJ denotes the total number of detectable harmonics of
the observed sound.

We assume all fundamental frequencies of interfering
soundsRi to be equally probable. Based on the assumption,
all m and n values bindingf0R in equation 2 are equally
probable, from where it follows thatR is equally probable to
choose to overlap any subsetEm. However, the relative
trustworthiness is not the same for all the single harmonics
hj, but equals the probability that none of the setsEm thathj
belongs to is overlapped. This is calculated asτD(j), whereτ
represents the overall probability of an interfering sound to
overlap some subsetEm andD(j) is the number of subsets
Em that harmonichj belongs to. It can be easily proved that
D(j) is the number of integers that dividej, D(1)=1. An inte-
ger a is defined todivide another integerb, if and only if
b = da holds for some integerd [9].

Selection probabilitiesPs(j) of the harmonics should be
according to their probability of being trustworthy. We can
therefore writePs(j) in the form

, (10)

where , andD(j) is as defined above.
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We can now rewrite the requirements of the feature
exraction filterv as

 , (11)

where setI is defined to contain the numbersj of the har-
monics hj that belong to some of theN largest subsets
{ Em | m=2,3,5,7...}. IfN=1, setI simply contains even num-
bers up toJ. Thus the left side sums the selection probabili-
ties of the harmonics in theN largest subsets. The right side
summation goes over the selection probabilities of all the
harmonics and should equal unity.

From equation 11,τ can be solved. If the problem is solv-
able for givenN, λ andJ, there is only one root that is real
and between 0 and 1. This root is the earlier discussed value
of τ. Selection probabilitiesPs(j) can then be calculated by
substitutingτ to Equation 10, and scaling the overall sum of
Ps(j) to unity.

We arrive at selection probabilitiesPs(j), whereN inter-
fering sounds may together contribute only up toλ probabil-
ity that an overlapped harmonic exists in the output.
Another very important property of this algorithm is that we
can flexibly make a tradeoff between the two requirements
of the filter: the less we put emphasis on the robustness of
the filter v in the presence of interfering sounds, the more
equally the filter utilizes all the harmonics of the observed
sound, and vice versa. Figure 1 illustrates the selection prob-
abilities forN=2, λ=0.45 andJ=20.

Thus we reduced the observation of a featureg(S) of a har-
monic soundS in the presence of other interfering harmonic
soundsRi to measuring the featuresg(hj) of the harmonics
of the soundS and applying a weighted order statistic filterv
to yield an estimate forg(S). A design procedure to find a
WOS filter whichimplements the calculated selection prob-
abilites is presented in [10].

8   FEATURE SUBTRACTION PRINCIPLE
Our algorithm and discussion on the observation of the fea-

tures of a harmonic sound in the presence of other harmonic

sounds was based on an assumption that the observed sound

S is not totally overlapped by an interfering sound R, whose

fundamental frequency is .

The basic idea of our solution to this problem is tocom-
pensate the effect of the interfering soundR, the properties
of which can be robustly extracted in the presence ofS using
the procedure presented before, because the interfering
sound is not totally overlapped byS. Thus it will be enough
to develop an algorithm to subtract, remove, or compensate,
the revealed properties of the lower sound and then proceed
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Figure 1.Ps(j) for 20 harmonics, whenN=2 andλ=0.45.
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to determine the properties of the soundS, which is laid bare
from under the interfering sound. The subtraction process
depends on the feature under inspection, and cannot be pre-
sented in a general form.

9   ALGORITHM EVALUATION
Our algorithm was evaluated and verified by applying it in a
computer program whose purpose is to transcribe poly-
phonic piano music. The program is first allowed to study
piano notes one by one, a sufficient amount to represent all
the different tone coloursthat can be produced by that
instrument. After this we require the program to transcribe
rich polyphonic musical signals played with the same instru-
ment, i.e., to determine the fundamental frequencies and the
loudnesses of the sounds in the signals.

In all test cases, the transcription was done without
knowledge of the polyphony of the transcribed signals, and
with a fixed constant set of parameters. The range of funda-
mental frequencies was restricted to extend from 65 Hz to
2100 Hz, where five octaves and 61 piano keys fit in
between. An acoustic upright piano was used in simulations.

Transcription proceeds by first detecting all potential note
candidates in the spectrum, and then resolving their loud-
nesses one by one, using the new method. Naturally, there
are much more potential note candidates than truly played
notes. We calltrue notes the notes that were truly played in
the recorded signals, andfalse notes those that appear as
note candidates, although they were not actually played.

The goodness of the algorithm is justified by its ability to
indicate the truly existing sound in the signal, i.e. the loud-
ness of the true notes should raise clearly above the loudness
of the false ones. The loudnesses of the candidates in each
time segment are scaled between the values 0 to 100.

Certain note combinations were separately played and
fed to the transcriber to review its ability to resolve rich
musical polyphonies. Results are presented in Table 1. In the
first type of tests, consonant and dissonant chords were
played, two in each of the five octaves. In the second test,
groups of adjacent notes in the piano keyboard were played
in each octave. Third, groups of seven random notes were
allotted in the allowed range of pitces and played. In each of
these tests, average loudnesses among the true and false
notes were calculated and recorded. Also the worst cases,
where the loudness of the false notes gets closest to the true
notes, was recorded. The polyphony, number of notes in
each test, is also indicated.

Chosen classical compositions were played and excerpts
from them were posed to our transcription system to test its
practical transcription efficiency. Here we used 25% relative

Table 1: Relative loudnesses of the true and false notes.

Test type Polyp.
Averages Worst case

min true max false min true max false
chords 3-4 64 17 78 43
groups 4-5 48 7 30 7
random 7 21 11 10 11

loudness as a threshold to segregate between true and false
notes. Weaker candidates were discarded as false notes.
Results are presented in Table 2. The last piece was played
by a computer on an electric piano. The effect of all notes
having roughly equal playing loudness and the absence of
cross resonance and noise can be noticed in the results.

Finding the exact fundamental frequencies of the sounds in
the analyzed signals proved successful in all cases. They
were not assumed to be quantized to the closest legal notes.

10   CONCLUSION
The problem of resolving rich musical polyphonies was the
motivation for developing the new methods. Simulations
illustrate that the current system works within certain error
limits up to seven notes polyphony. Especially, although
increase in polyphony brings the levels of the weakest true
note and the strongest false note closer to each other, the
system does not totally break down even in rich polypho-
nies. We conclude that a number theoretical analysis of a
sound mixture is the key to a robust detection and observion
of harmonic sounds in the interference of each other.
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Table 2: Transcription results using 25% loudness limit.

Composition Notes
in total

Typical
polyphony

Missing
notes

Erroneous
extra notes

Für Elise, I 86 1 - 3
Für Elise, II 190 half:2 half:4 9 6
Inventio 8 205 2 15 4

Rondo alla Turca 142 3 (up to 5) 1 -



11   THRASHCANNED (Did not fit to the paper)
output of a WOS filter is calculated by repeating each

input sample up to its weight, sorting the resulting multiset,
and then choosing theTth smallest value from the resulting
multiset. The weights and the thresholdT are the parameters
of the filter. The weights of a WOS filter

To illustrate this we shortly review the results of an older
reference system which was based on straightforward pat-
tern recognition. Before the presented algorithm was recov-
ered, we developed a system that was aimed to solve the
same problem as the one presented earlier

To evaluate the efficiency of the transcriber ingiving
prominence to the true notes,we represent the results before
the final segregation which will . Thus the loudness of the
true note candidates should raise clearly above the loudness
of the false ones. Loudnesses are represented in relative
terms, so that the loudness of the loudest note is always
100 %. It would be desirable to keep loudnesses of the true
notes above 40 % and that of false notes below 20 %.

We will also compare this transcription system to our
older pattern recognition approach, reflect their differences
and strengths, and evaluate the role of the new methods.

It turned out, however, that tone patterns in the straight-
forward pattern recognition approach are completely sunk
under each other already in three notes polyphony. This is
due to the properties of an overlapping harmonic series and
the percentages of the overlapped amounts that were dis-
cussed in the previous chapter.bc
[10] We denote the total number of detectable harmonics of

the observed sound byJ. The overall selection probabil-
ity of the harmonics is

(12)

and should equal to unity.
SetI is defined to contain the numbersj of the harmonics

hj that belong to some of theN largest subsets
{ Em | m=2,3,5,7...}. IfN=1, setI simply contains even num-
bers up toJ. The sum over the selection probabilities of the
harmonics in theseN largest subsets is

. (13)

Finally, we can rewrite the first requirement of the feature
exraction filterv (see Table x on x) as

 , (14)

from which τ can be solved. Although this cannot be
done analytically for higher than fourth order polynomials,
efficient numerical methods exist [Horn85]. In practice, this
reduces to finding eigenvalues of the associated companion
matrix ofA [Horn85].

If the problem is solvable for givenN, λ andJ, there is
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only one root that is real and between 0 and 1. This root is
the earlier discussed value ofτ. Selection probabilitiesPs(j)
can now be solved by substitutingτ to Equation 10.


