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ABSTRACT

This paper deals with some aspects concerning to the
practical implementation of the stochastic gradient al-
gorithms in active control. The control system under
study is assumed to be a multichannel feedforward sys-
tem and it is also assumed that there is not feedback
signals from the secondary sources measured at the de-
tection sensors.

Several iterative algorithms were developed in [1] [2] for
a frequency domainmodel of a multichannel active noise
control system. Such iterative algorithms related to the
p-norm of the error signal vectors were then applied to
control pure tones in time domain [3].

When the disturbance signals can be modelled as sta-
tionary stochastic processes, a di�erent framework is
needed although there exist some analogies with the
frequency domain model. This paper reviews the de-
velopment and implementation techniques of stochastic

gradient algorithms for active control under a general
point of view, and then focuses on algorithms called min-
imax type which were studied in the frequency domain
in [1] [2] [3].

1 CANCELLATION OF STA-

TIONARY STOCHASTIC PROCESSES IN

ACTIVE CONTROL

The model described in [4] and [5] will be used. Fig. 1
shows the block diagram of the active noise control sys-
tem model. There are M secondary sources, L error
sensors and K reference signals. The diagram contains
the next blocks: a matrixW composed by theMxK im-
pulsional responses of the electric controller (the adap-
tive �lters); and the system responses matrixC which is
composed by the LxM system responses between each
secondary source input and each error sensor output,
these system responses are commonly called the error

paths.

The matrixW is considered for the moment time in-
variant and it is implemented as matrix of FIR �lters
with coe�cients wmki. The error paths responses can
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Figure 1: Multichannel pure feedforward ANC system.

also be modelled as a matrix C of FIR �lters with co-
e�cients clmj and a duration of J samples each �lter.
The output of the j-th error sensor can be written as,

el [n] = dl [n] +

MX
m=1

J�1X
j=0

clmjum [n� j] (1)

where dl [n] is the noise due to the primary noise mea-
sured at the l-th sensor. The input to them-th secondary
source um[n], can also be written as,

um [n] =

KX
k=1

I�1X
i=0

wmkixk [n� i] (2)

where xk [n] is a sampled version of the k-th reference
(or primary) signal. Using (2), (1) becomes,

el [n] = dl [n] +

KX
k=1

I�1X
i=0

MX
m=1

wmkirlmk [n� i] (3)

where the �ltered reference signals are de�ned as,

rlmk [n] =

J�1X
j=0

clmjxk [n� j] (4)

The order of the �ltering of the reference signals has
be changed in (3) since W was assumed to be time in-
variant. Equation (3) illustrates the linear relationship
between the error signal and the controller coe�cients
and can be expressed in matrix form as, [4] [5],



e [n] = d [n] +R [n]w (5)

where,

e [n] = [e1[n]; e2[n]; : : : ; eL[n]]
T

d[n] = [d1[n]; d2[n]; : : : ; dL[n]]
T

w =
�
wT
0
;wT

1
; : : : ;wT

I�1

�T (6)

and

wi = [w11i; w12i; : : : ; w21i; w22i; : : : ; wMKi]
T
; (7)

R[n] =

2
6666664

rT
1
[n] rT

1
[n� 1] :::

rT
2
[n] rT

2
[n� 1] :::

: :

:

:

: rTL[n� I + 1]

3
7777775

(8)

with

rl[n] = [rl11[n]; rl12[n]; : : :; rl21[n]; rl22[n]; : : : ; rlMK [n]]
T
:

(9)
The optimum values of the coe�cients vector w de-

pend on the cost function related to the error signals
whose minimisation is wanted. A cost function analo-
gous to the p-norm of the error signal vector, e[n], can
be de�ned as a �rst approach to a general cost function,
as in [1] [2]. This cost function is chosen as the sum
of the p-order moments of the di�erent error signals [6]
and it is therefore given by,

Jp = E
�
ke[n]kpp

	
= E

(
LX
l=1

jel[n]j
p

)
(10)

where 0 < p <1.
The existence of optimum vectors or minimizers

of (10) is assured if Jp is a convex function (it must
be also assured that processes el[n] has �nite p-order
moments). A closed expression for the control vector
which minimises (10) seems not to exist for the general
case, but there exists for p = 2. In any case, a iterative
expression to minimise Jp based on an steepest descent
method can be used to reach this optimum. As the true
gradient vector of the cost function is di�cult to calcu-
late in practice, an stochastic estimation of the gradient
vector can be used instead [7]. The stochastic gradient
vector is given by,

gp[n] =
@Jp[n]

@w
=

LX
l=1

jel[n]j
p�2RT

l [n]el[n] (11)

where Rl[n] corresponds to the l-th row of the �ltered
reference signals matrix R[n] and el[n] is the signal at
the l-th sensor.
An iterative algorithm to minimise (10) is built using

the stochastic gradient vector de�nition in (11).

w[n+ 1] = w[n]� �

LX
l=1

jelj
p�1RT

l [n]sign (el[n]) (12)

where 0 < p < 1 and � is called the convergence pa-
rameter.
Equation (12) is the vector form of the expression

given in [6] for the algorithm called Least Mean p-norm,
LMP. The recursion in (12) does not seem very use-
ful in the general case. However there exist some cases
where (12) can be useful. For the 1-norm, equation (12)
becomes,

w[n+ 1] = w[n]� �

LX
l=1

RT
l [n]sign(el[n]) (13)

which is a general form of the sign LMS algorithm. The
single channel version of this algorithm is called Least
Mean Absolute Deviation, LMAD, and it can be found
in [6]. The sign algorithm has shown to be very useful
in real time control systems, since it saves calculations
compared to the LMS.
The sign algorithm has been used in some ANC ap-

plications, as an example, in [8] the single error version
of this algorithm is used to build a computational e�-
cient implementation of the waveform synthesis method.
This approach can be also found in [9]. In any case, the
physical sense of the minimisation of J1 needs to be ex-
plained to validate this cost function in active control
applications.
When p = 2 equation (12) becomes,

w[n+ 1] = w[n]� �

LX
l=1

RT
l [n]el[n] (14)

which is, as it was expected, the same iterative ex-
pression as the de�nition of the multiple error �ltered-
X LMS, MELMS, [10], which has been broadly used in
the �eld of active control.
There can be found some algorithms which minimise

the cost function de�ned in (10) with other �nite values
of p [11] [12] but all of them have been formulated for
the single channel case and not for the general case as we
do here. The application described in [12] uses a single
channel-single error version of the iterative algorithm
in (12) to carry out the active control of impulsive noise
in a duct, with 0 < p < 2.

2 MINIMAX TYPE STOCHASTIC GRADI-

ENT ALGORITHMS

The cost function in (10) cannot be de�ned when the
p-order moments of the processes el[n] does not exist.
Therefore, the limiting case, p!1, which was carried
out in the frequency domain model to develop the min-
imax algorithm [1], has in general no sense with (10).
The point is that the sum of the 1-order moment of

the error signal is not what is really wanted to minimise.
A minimax type algorithm in active control is intended
to balance the acoustic �eld after control, therefore it is
needed to de�ne which measure of the acoustic �eld is



wanted to balance and then apply a minimax strategy
of minimisation using this measure. A cost function
de�nition which takes into account the last discussion is
given below,

J1 (q) = limp!1
p

qP
1�l�L (Ef jel[n]j

q g)
p
=

max1�l�LE fjel[n]j
qg = E fjeb[n]j

qg
(15)

where q > 0 is a parameter which can be selected to
change the error signals measure. This measure is given
in (15) by the error signals q-order moments.
Subscript b selects between the error signals, 1 � l �

L, that one with larger q-order moment. It is important
to note that the value of subscript b depends on the
current value of the control vector w, a change of this
vector could imply a change of the error signal with
larger q-moment and so of the value of b.
It is useful to consider the instantaneous value of (15).

This objective function, instantaneous or stochastic,
consists in the instantaneous maximum value of the er-
ror signals (without sign) raised to the q-th power,

J1[n; q] = max
1�l�L

jel[n]j
q = jeb[n]j

q (16)

This function chooses the sample of the error signal of
maximum absolute value at each iteration (any of them
is chosen in case there are several equal values).
The stochastic gradient is calculated as in previous

cases and is given as below (the values of q can be re-
stricted to even numbers to avoid problems with the
signs in the derivatives),

g1[n; q] = qjeb[n]j
q�2RT

b [n]eb[n] (17)

The gradient in (17) is valid for a given value of the
control vector w, any change of this vector will change
the value of the gradient.
It has really practical sense the case with q = 2 since

the 2-order moments of the error signals are easily re-
lated to physical quantities whose mean square value
has practical sense. Using the stochastic gradient an
iterative algorithm can be found as,

w[n+ 1] = w[n]� �RT
b [n]eb[n] (18)

The algorithm in (18) will be called Least Maximum
Mean Squares algorithm, LMMS. Subscript b denotes
the error signal with maximum mean squared value for
a given value of the control vector. Di�erent versions of
this algorithm can be implemented in practice, depend-
ing on the mean squared values estimation. However,
any of them should lead to the same optimum value (in
case they converge). In the same way, the control vector
update in (18) can be carried out each block of samples
instead of each single sample, so de�ning a block LMMS.
The main idea of the LMMS algorithm lays on the

reasoning given above. Even though the LMMS im-
plementations using the stochastic gradient lead to the

Figure 2: ANC system scheme for two microphones and
the MELMS algorithm.

Figure 3: ANC system scheme for two microphones and
the LMMS algorithm.

same iterative algorithm, di�erent mean squares estima-
tions lead to di�erent versions of the algorithm. These
di�erent versions do not change neither the update equa-
tion nor the optimum value but they can have di�erent
convergence properties. Therefore it can exist some ver-
sions with poor convergence properties or even with no
convergence at all.

3 A PRACTICAL EXAMPLE

Two iterative algorithms described in the last section
were used to cancel a broadband gaussian noise signal
whose spectrum was in the range from 10 to 150 Hz
in a pure feedforward active control system working in
a duct [3]. The system was composed by one primary
source, one secondary source and two error sensors. The
number of adaptive �lter taps was 145. The next expres-
sions apply in this case: equation (14) for the MELMS
and equation (18) for the LMMS.

The block diagrams that describe these algorithms are
given by �gures 2 and 3.



The LMMS algorithm is shown in �gure 3. The taps
update depends on the comparison between the error
signals powers. The error signal whose estimated mean
power, P̂e1 and P̂e2, was larger at instant n is used in the
corresponding algorithm iteration. The mean power of
the error signal was calculated in this example by means
of an exponential window estimator which is de�ned as,

P̂e [n + 1] = �P̂e [n] + (1 � �)e2 [n] ; (19)

where the parameter � is called the forgetting factor and
it is typically chosen 0:91 � � � 0:94. The exponential
window was used for its low computation requirements
and it was validated in the laboratory experiments.
Figure 4 illustrates the cancellation results when ei-

ther the MELMS or the LMMS algorithms are used.
Both algorithms lead to the same �nal error signals as
it was expected [3]. It was shown in this particular ap-
plication that the LMMS algorithm saves computations
and achieves in general a faster convergence than the
MELMS algorithm.
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