
ADAPTIVE TREE-STRUCTURED LATTICE

VECTOR QUANTIZATION FOR VIDEO CODING

Vincent Ricordel yand Moncef Gabbouj z
yMS-GESSY/ISITV, Universite de Toulon et du Var,

Av. Georges Pompidou BP56,
83162 La Valette du Var , FRANCE

zDMI/SPL, Tampere University of Technology,
P.O. Box 553, 33101-Tampere, FINLAND

e-mail: ricordel@univ-tln.fr, gabbouj@cs.tut.fi

ABSTRACT

The purpose of this paper is to introduce a new adap-

tive vector quantization (AVQ) for the compression of

digital image sequences. In our previous studies [13, 14]

we proposed a lattice vector quantizer (LVQ) based on

the hierarchical packing of embedded truncated lattices.

Now we investigate the capability of this LVQ for AVQ,

through a scheme taking account of its tree-structure.

Precisely, in order to �t the spatiotemporal statistics

of the image sequences, the codebook is designed using

a training procedure and in two parts, with: a stump

from several types of training sequences; some branches

added according to the sequence to be coded. Experi-

mental results are given with the adaptive LVQ taking

place in a subband coder.

1 INTRODUCTION

Predictive coding and subband coding [11] are unavoid-

able decorrelation methods for the compression of dig-

ital image sequence. Because an hybrid coder aims to

apply precisely two main rules : the non-transmission

of predictable information and, the non-transmission of

the no perceivable information by the human visual sys-

tem (HVS). Fig 1 shows the generic coder for which our

adaptive LVQ is devoted. Note that we doesn't study

in the paper the quantization aspect of the information

performed by the motion estimation [16] between each

image pair of the input sequence, but the VQ 1 of the

transformed prediction errors.

The inter-intra decorrelation steps shape the signal be-

fore its quantization. Because in each subimage the data

are classi�ed according to their frequential orientation

and resolution. A separate VQ of each subimage is well-

suited in order to exploit the dependencies between the

transformed coe�cients [3], and the bit allocation is per-

formed such as, taking account of the HSV propriety,

the low frequency subimages receive more bits (but the

resulting gain is subjective). The monodimensional pdf

of such subimage is commonly mapped by a Gaussian

1
from now VQ means vector quantizer as well as vector

quantization

Generalized function whose narrowest highligts the cor-

relation between the coe�cients [3]. However the mul-

tidimensional signal obtained after the hybrid decore-

lation chain is always nonstationary [6, 1]. Only an

adaptive VQ [9, 7] is capable of adapting to changing

source statistics as the coding progresses. Such as, from

a representative training sequence, a very fast updating

of the VQ codebook is achieved.

2 SUMMARY OF THE PREVIOUS STUDY

2.1 Context : Lattice Vector Quantization

The LVQ [5, 3] has been successfully introduced in or-

der to overcome the LBG-type algorithm drawbacks [8].

The encoding, based on rounding and scalling opera-

tions, is simple and independant of the codebook size.

There is no need to search among all the reproduction

vectors, and practically no norms are computed. Be-

cause of the prede�ned structure of the lattice, there is

no need to transmit the codebook and no training pro-

cedure is required to design it. But a lattice can only

quantize an uniform source and, because of its in�nite

size, it must be truncate to index the codewords. The

choice of the metric L2 [10, 2] (resp. L1 [5, 10, 3]) per-

mits to shape the codebook into an hyper-sphere (resp.

an hyper-square) and to count the points. As a result

the basic LVQ is only adapted for symetric and Gaus-

sian (resp. Laplacian) source distributions which map

such a codebook. This restrictive modelization of the

source o�ers some accurated and sophisticated methods

to achieve the LVQ design, but the well-perform con-

dition collapses considering a complex source coding at

low bit rate. With the tree-structure LVQ (TSLVQ),

based on embedding lattice strategy, simple procedures

are implemented to overcome these drawbacks.

2.2 Tree-Structure Lattice Vector Quantization

Considering the lattices for which Conway and Sloane

determined fast quantizing and decoding algorithms [4],

the TSLVQ is based on the hierarchical packing of em-

bedded truncated lattices. In [13, 14] we investigate

its complete design with : the lattice truncation, the

multistages procedure of quantization, the unbalanced



tree-structured design and the determination of the best

lattice respectively to this method. The detection and

the processing of the probable outlying input vectors are

de�ned too.

The TSLVQ o�ers some original solutions to usual LVQ

drawbacks, with a space partition according to the

source distribution, and a simple labelling of the lattice

points. The resulting codebook automatically obtained

is well suited for prediction error coding.

2.3 Binary Allocation Method

The bit allocation problem occurs when you have to

share the bit ressource between the subbands [15]. We

present brie
y our solution with the TSLVQ

Precisely it consists in minimizing the distorsion D sub-

ject to the constrainst that the global rate R is under a

threshold Rd. The transformation is supposed orthogo-

nal and there are M subbands:

minD = min

M�1X

j=0

dj;i with R =

M�1X

j=0

rj;i � Rd

For each subband j there are some potential quantizers

qj;i (each of them corresponds to a con�guration of the

TSLVQ tree), dj;i is the distorsion for the rate rj;i. For a

combination ofM quantizers (i.e. a separate TSLVQ for

each subband) we get a bipoint (R,D) in the distorsion

vs. rate space, and all the NM combinations produce a

cluster (�g 4 shows an example). The problem becomes

the determination on the convex hull of this cluster of

the bipoint whose rate is just lower than Rd. In order to

reduce the amount of calculus the Lagragian multiplier

� is introduced to solve:

min(D + �:R)()

M�1X

j=0

min
qj;i

(dj;i + �:rj;i)

The complexity decreases because the reduction of the

distorsion is now achieved separately from each sub-

band. The general form of the algorithm is:
1. The convex hull for each subimage is calculated.

With the TSLVQ we obtain directly it when gro-

wing the tree.

2. The point on the global convex hull is determina-

ted. Its rate is just below Rd.

For this last step the Shoham's method [15] can be ap-

plied. It is based on the calculation of singular values

of � (i:e: the slopes of the lines that pass through the

consecutive points of the convex hull). So, from a �rst

point of the hull and by successive calculations of sin-

gular values, we get the global convex hull. The �g 4a

shows an experimental result with the TSLVQ. A draw-

back appears because there are some large gaps between

some points of this global convex hull. So we want to

modify the algorithm in order to get the "optimal quan-

tizers" (see �gure 4), namely the points just above the

convex hull. We proceed in two steps:

1. The previous algorithm permits to get two points

of the convex hull that surrounding Rd.

2. From these two points, the Shoham's method [15]

is used again in order to get a local portion of

convex hull.
The curve titled "intermediary quantizers" on the �g 4b,

is achieved by calculating the portions of convex hulls

between each bi-point of the global convex hull. As a

result a lot of optimal quantizers are got.

3 ADAPTIVE VQ DESIGN

For the adaptive TSLVQ the codebook is designed using

a training procedure and in two parts:
1. A stump from several types of training

sequences (this stump construction is achieved

outline).

2. Some branches added according to the sequence to

be coded (these branches will constitute the only

transmitted information to update the codebook).
Because of the binary allocation that implies a tree

pruning, there are precisely four steps in the algorithm

(see �g 2):

1. Construction of a large stump.

2. Binary allocation from this stump (the

corresponding threshold Rd is very low).

3. Addition of large branches.

4. Final binary allocation with the desired bit rate.
In order to update the codebook, only the steps 3 and

4 are carried out. For the greedy tree growing method

of the steps 1 and 3, see [13].

4 EXPERIMENTAL RESULTS

The coder (see �g 1) is MPEG based because the tools

are a block matching for the motion estimation and a

DCT for the transformation. The block size is 2 � 2 so

four subbands are set up (see �g 3). The simulations are

made using QCIF image sequences, and the computer

is a SparcStation 20 (75 Mhz).

Images from four di�erent sequences are used for the

stump design, but we only use the images of one se-

quence to add branches (table 3 shows typical numer-

ical results). A particular codebook is then applied to

code the sequence that was used for the branches addi-

tion (see table 1). The CPU time for an image coding

is about 1.8 s.

For comparison, the table 4 shows codebook design re-

sults with classical TSLVQ, and the table 2 the corre-

sponding coding results.

5 CONCLUSION

With adaptive TSLVQ we get, with respect to our pre-

vious work, a more acurate binary allocation, and a bet-

ter regularity for the reconstruction when decoding the

sequences. The transmitted information to refresh the

codebook is not large, and the CPU time to design or

update the codebook is short.
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Figure 1: Hybrid coder. I: input image from the sequence;
Ip: prediction image; Ir: reconstructed image; e: prediction
error image; eq: quantized prediction error image.

sequence number of average average

name images entropy [bpp] PSNR [dB]

"Miss America" 150 0.273 38.03

"Salesman" 180 0.170 36.66

"Carphone" 180 0.257 32.65

Table 1: Coding of sequences with the adaptive TSLVQ.

sequence number of average average

name images entropy [bpp] PSNR [dB]

"Miss America" 150 0.134 36.87

"Salesman" 180 0.177 36.58

"Carphone" 180 0.381 34.12

Table 2: Coding of sequences with the classical TSLVQ.
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Figure 2: Adaptive TSLVQ, the four steps of the codebook
design.
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Figure 3: Codebook: Vector shapes and maximal entropies
before bit allocation (note the subband labels).
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Figure 4: [a,b]: Cluster of bi-points (R;D) and hulls calculated for the binary allocation.

stump design from four sequences

before bit allocation after bit allocation (Rd = 0:1bpp)

subband training sequence CPU time for number of codebook number of codebook codebook

labbel size [images] construction [s] codevectors entropy [bpp] codevectors entropy [bpp] size [byte]

A 4 4.93 55 0.698 20 0.332 238

B 12 6.15 106 0.213 26 0.020 259

C 12 6.22 133 0.231 34 0.027 315

D 200 69.43 1982 0.083 92 0.003 810

addition of branches from the sequence "Salesman"

before bit allocation after bit allocation (Rd = 0:2bpp)

subband training sequence CPU time for number of codebook number of codebook additional

labbel size [images] construction [s] codevectors entropy [bpp] codevectors entropy [bpp] information [byte]

A 5 7.18 48 0.954 20 0.337 0

B 10 5.97 104 0.205 104 0.205 681

C 10 6.11 161 0.318 86 0.253 448

D 150 52.92 1348 0.078 92 0.002 0

Table 3: Codebook design with adaptive TSLVQ: numerical results.

before bit allocation after bit allocation (Rd = 0:20bpp)

subband training sequence CPU time for number of codebook number of codebook codebook

labbel size [images] construction [s] codevectors entropy [bpp] codevectors entropy [bpp] size [byte]

A 5 7.15 27 0.964 21 0.420 244

B 10 5.48 137 0.258 37 0.033 336

C 10 5.50 148 0.281 148 0.281 1358

D 150 46.75 1248 0.087 529 0.066 4995

Table 4: Codebook design with classical TSLVQ and using the sequence "Salesman": numerical results.


