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ABSTRACT

A modi�ed Constant Modulus Algorithm (CMA) is pro-
posed for real signals impinging upon an array. The
algorithm solves the mix-up problem of CMA which oc-
curs when real signals propagate through complex chan-
nels. Moreover, it decreases computational complexity
and extends the maximumnumber of real sources which
can be resolved by a given array. Simulations are pre-
sented to support the analysis.

1 INTRODUCTION

The Constant Modulus (CM) algorithm [1, 2] was �rst
applied to array processing [3] to reconstruct transmit-
ted signals from their received mixtures. The sequential
and blind nature of the CM array has many advantages
over block-based and parametric-array processing. For
example, it does not need precise array calibration as
generally required by parametric-array processing algo-
rithms. Moreover, in an urban or hilly-rural terrain,
where it is normal to �nd that two or more signals
are highly correlated, or coherent, conventional direc-
tion �nding algorithms based upon subspace methods
such as MUSIC [4] and ESPRIT [5] fail; whereas the
CM array remains applicable because it does not de-
pend upon the actual Directions Of Arrival (DOA) of
the signals. The CM array removes coherent signals as
the linear-combination of their DOA, i.e., their e�ective
DOA [6]. Although, an algorithm has been proposed
in [7], which reduces array calibration and coherent ef-
fects, it is a block-based algorithm which implies that
its ability to track moving sources is restricted.

However, because of some undesirable characteristics
of CMA, the CM array still has problems which many
researchers have been addressing. Signal cancellers were
introduced in [8] in order to prevent two or more CM
arrays from capturing the same signal, and have been
modi�ed in [9] to remove both a captured signal and its
delayed-versions. Local minima and convergence rate
problems have been addressed by many workers. A vari-
able stepsize in [10] allows CMA to track the same sig-
nals in a fast-fading environment. To increase selectiv-
ity of the equaliser, a spatial-temporal model has been

studied [11, 12]. Generally these modi�cations make the
CM array smarter, whilst requiring more computational
complexity.
In [13], another problem of CMA has been pointed

out. The problem will occur when real modulated sig-
nals, such as Amplitude-Shifted-Keying (ASK) signals,
propagate though complex channels. The real and the
imaginary parts of the equaliser output will usuallymix-

up two di�erent delayed-versions of the transmitted sig-
nal, for which the Signal to Interference and Noise Ratio
(SINR) will be low in the single-user case. The problem
is obviously more severe in the multi-user case, but has
not been explained in [13].
In this paper, we will propose a modi�ed CMA algo-

rithm to solve the mix-up problem in section 2. We also
show that the modi�cation requires less computational
complexity than the conventional CMA. Moreover, the
modi�cation will be proven to handle a greater num-
ber of signals than the number of sensors in section 3.
Then we will further demonstrate the mix-up e�ect in
the multi-user case by simulations in section 4. These
results evidence the advantage of the proposed mod-
i�cation. Finally, discussions and conclusions will be
presented in section 5.

2 REAL CMA

Godard's cost function [1] for the CM algorithm can be
written as

JGodard , Ef(jwHxjp � Rp)
2g (1)

where w is the complex adaptive weight vector, x is the
complex input mixture, Rp = Efjs2pjg=Efjspjg is called
the dispersion constant, s is the transmitted source, p
is a positive-integer constant, and Ef�g and (�)H denote
respectively statistical expectation and Hermitian trans-
pose operations.
With the assumption that all the signals, impinging
upon the array, are real, we propose to modify the cost
function to

J 0 , Ef(jRe(wHx)jp � Rp)
2g (2)

where Re(�) denotes the real part of (�).



In order to �nd the optimal solution for w, we min-
imise the cost function with respect to w.
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Then substitute (5) in (3), to obtain

rwJ
0 = 2pEf(jRe(wHx)jp �Rp) �

jRe(wHx)jp�2 �Re(wHx) � xg (6)

Adaptation of the weight vector in a form of a steepest-
descent search can be written as

wn+1 = wn � �rwJ
0jw=w

n

(7)

where � is the stepsize of the adaptation.
Finally, a stochastic gradient algorithm can be obtained
by dropping the expectation operator and replacing vari-
ables by their instantaneous values, that is

yn = Re(wH
n xn) (8)

en = p(jynj
p) �Rp)jynj

p�2yn (9)

wn+1 = wn � 2�enxn (10)

where yn is the output of the CM array.
Equations (8), (9) and (10) are similar to Godard's

equations except that we incorporate explicitly real
knowledge in the modi�ed CM algorithm. Notice that
we do not have to �nd the imaginary result of the com-
plex multiplication in (8), moreover (9) is an equation
containing only real values. If p = 2, this modi�ed CM
algorithm requires 3M + 3 real multiplications and 2M
real additions per iteration, whereas the conventional al-
gorithm requires 8M+10 real multiplications and 8M+3
real additions per iteration, where M is the number of
sensors in the beamformer or length of the equaliser.
Hence, computational complexity of the modi�ed CM
algorithm is less than half of that of the conventional
one.

3 APERTURE EXTENSION

If there are N uncorrelated sources impinging upon an
array of M sensors, a well-known limitation of the con-
ventional CM array is that N must not be greater than
M , in order to reconstruct all sources. However, if all the
sources are known to be real, we can incorporate this in-
formation by applying the modi�ed CMA to beamform-
ers. We must establish how many sources the beam-
formers can process.

Given that there are 2M real sources, s, impinging
upon M sensors, the measurement signals, x, can be
written as

x = As+ n (11)

where A is the complex M � 2M steering matrix and
n is the complex measurement noise vector, in which
each element is assumed to be zero-mean, white and
uncorrelated with the received signals and all other noise
elements.
Without loss of generality, we assume that the mod-

i�ed CM arrays try to �nd a 2M �M weight matrix,
W = [wH

1
; : : : ;wH

2M ], where each weight vector, wi,
i = 1; : : : ; 2M captures the ith source. By (8) and (11)

y = Re(Wx) (12)

= Re(W(As + n)) (13)

= Re(WA)s +Re(Wn) (14)

Clearly, the output y �= s when

Re(WA) = I2M (15)

and Re(WA)s � Re(Wn), where I2M is a 2M � 2M
identity matrix.
Similarly, it is evident that the conventional CM array

cannot �nd the optimum solution, when the noise is
zero, which is

WA = I2M (16)

because this set of 2M � 2M e�ective scalar equations
has only 2M �M unknowns (w�

ji, i = 1; : : : ;M , j =
1; : : : ; 2M and (�)� denotes complex conjugate.), i.e., an
over-determined set of equations.
Equation (15) neglects the imaginary path of the out-

put signal, and can be written as

WrAr �WiAi = I2M (17)

where (�)r and (�)i denote respectively the real and the
imaginary parts of (�). This equation can be written in
the matrix form as

(WrWi) �

�
Ar

�Ai

�
= I2M (18)

Because both [WrWi] and [Ar�Ai] are 2M � 2M ma-
trices, so (14) is an exactly-determined equation, hence
the modi�ed CMA can converge to this exact solution.
In the under-determined case, i.e.,N < 2M , the mod-

i�ed CMA is also able to �nd an optimum solution. In-
tuitively, if N � 2M , the minimumnorm solution which
the modi�ed CMA can �nd is

(WrWi) =

�
Ar

�Ai

�]
(19)

where (�)] denotes pseudoinverse operation.
The above analysis approves that the number of

sources can be extended to twice the number of sen-
sors, when all sources are real and the modi�ed CMA is
applied to the beamformers.
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Figure 1: Constellation of the captured signal by the
conventional CM array
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Figure 2: Constellation of the captured signal by the
modi�ed CM array
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Figure 3: Reconstruction of two signals (dotted line)
from the real (solid line) and imaginary (dash-dotted
line) parts of the output of the �rst CM array

4 COMPUTER SIMULATIONS

4.1 Mix-up E�ect

This experiment is set up to show the mix-up e�ect in
the multi-user case (without InterSymbol Interference
(ISI)) of the conventional CM array and to con�rm that
the modi�ed CMA can solve the problem.

Suppose a linear array has three omnidirectional sen-
sors at position 0, 1 and 2 (�=2 units are employed).
Three uncorrelated BPSK sources (�1) illuminate the
array from DOAs of �10�; 0� and 15� to the broadside
of the array. Additive white noise is at 20 dB level.
The conventional and modi�ed CMA will be applied to
a beamformer as sequential schemes [6] in order to re-
construct these sources. All initial values of the weight
vector of CMA 2-2 [2] are [1 0 0]T .

Figure 1(a) shows that the �rst stage of the CM ar-
ray using conventional CMA does not provide a real
output but mixes up 2 input signals and yields a signal
which takes the form of a QPSK signal. The informa-
tion of both input signals is mixed in the real and the
imaginary parts of the output. One signal can be recon-
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Figure 4: Squared error of output from the real CM
arrays and their corresponding transmitted sources.

structed from the real part plus the imaginary part of
the output as shown in Figure 3(a). The other can be
obtained from the real part minus the imaginary part of
the output as shown in Figure 3(b). Certainly, the �rst
signal canceller cannot know that its input is the mix-
ture of two signals. It does cancel its reference input,
which is a QPSK signal, from the input mixture formed
from three BPSK signals. Hence its output mixture is
of the form of one QPSK signal and one BPSK signal.
Then, the second CM array will again mix-up the re-
maining two signals. The constellation of the mix-up of
BPSK and QPSK signals has the form of the hexagon
in Figure 1(b). The third signal is certainly not com-
putable from this mix-up. The hexagonal signal carries
the same information as the input mixture does, there-
fore the output mixture of the second signal canceller
contains no information. This is con�rmed by the out-
put of the third CM array in Figure 1(c).

On the other hand, the output of the three modi�ed
CM arrays are all open-eyed BPSK signals as shown in
Figure 2. They are tested to have the same information
as their corresponding transmitted signal as shown in
Figure 4. Hence the results support the objective of the
proposed modi�cation.

Note that the outputs of the conventional arrays de-
pend upon the number of signals, the number and DOAs
of the transmitted signals, and may have di�erent con-
stellations from the example in the experiment.

4.2 Aperture of the Modi�ed CM Array

To con�rm that the modi�ed CMA can handle the num-
ber of signals up to twice the number of sensors, the
following experiment is set up. The array, type of the
noise and transmitted signals are the same as those in
the previous experiment. But there are six transmitted
signals in this experiment. The sources are from direc-
tion of �50�, �30�, �10�, 20� 40� and 60� angles to the
broadside of the array. All weight vectors of CMA 2-2
are initialised with [1; 0; : : :; 0]T .
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Figure 5: Squared error of output from the modi�ed CM
arrays and their corresponding transmitted sources.

The results in Figure 5 show that all squared di�er-
ences between the output of the modi�ed CM array and
the transmitted signals converge below the threshold
(dotted line), which con�rm the analysis which proved
that the modi�ed CM array can operate with the num-
ber of signals equal to twice the number of sensors.

5 DISCUSSIONS & CONCLUSIONS

Complex-modulated signals are more e�cient than real-
modulated signals in term of channel capacity, and are
normally selected to be used for transmission. However,
this work has followed [13] who studied the special case
when real signals travel though complex channels.

Adaptation of the weight vectors in a complex form
with the conventional CM algorithm will usually cause
the mix-up e�ect. We have proposed a modi�ed CM al-
gorithm to solve this problem. Incorporating real knowl-
edge of the sources, implies that yn and the e�ective
error within the adaptation are real, and prevents the
algorithm from mixing up on two sources.

The number of operations required in the modi�ed
algorithms is one half of the conventional CM algorithm.
Furthermore, real adaptation has twice the number of
degrees of freedom. Therefore the maximum number of
resolvable sources, which can impinge upon an array of
M sensors, is extended to 2M . Simulations have been
presented to support the assumption of the proposed
modi�cation and con�rm the analysis work.

The error performance surface of this algorithm has to
be investigated in future work. Modi�cation of the cost
function to make the algorithm smarter in time-varying
channels is currently being undertaken.
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