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ABSTRACT

We show that by selecting an appropriate

distortion measure for the encoding-decoding

vector quantization schema of signals follow-

ing an unknown probability density p(x), the

process of minimizing the average distortion

error over the training set is equivalent to the

Maximum Likelihood (ML) estimation of the

parameters of a Gaussian mixture model that

approximates p(x). Non-stationary signal dis-

tributions can be handled by appropriately al-

tering the parameters of the mixture kernels.

1 Introduction

Vector quantization (VQ) [1] is a data com-

pression method in signal processing in which

an input signal x is assigned a value c(x) by

an encoder, and this value|instead of the ac-

tual value x|is sent through a communica-

tion channel to the receiver. The latter ap-

plies a decoder function x0 = x0(c(x)) to ob-

tain the original value. The quality of this

quantizer is measured by the average distor-

tion D over a training set T = fx1; : : : ; xng
of d-dimensional input signals de�ned as

D =

nX
i=1

�(xi; x
0

i); (1)

with �(x; x0) being the distortion, i.e., a dis-

similarity measure, between the actual signal

x and its reconstruction x0. The optimal val-

ues for the encoder and the decoder of a VQ

schema are those that minimize the function

D.

We assume that the probability density

function p(x) of the incoming signals is un-

known and we approximate it with a general

mixture of K Gaussian kernels [4, 8], each one

parametrized on its mean �j and variance �2j .

These parameters are to be estimated by the

Maximum Likelihood (ML) method [5] over

the training set T . In the following we show

that the ML estimation is equivalent to mini-

mizing the average distortion functionD, thus

provides a way to compute the nearly optimal

values for the encoder and decoder functions.

In addition, we propose a VQ schema that can

handle non-stationary signal distributions.

A similar model has been proposed in the

literature under the name of Probabilistic

Neural Networks [7], in which the mixing

weights are assumed equal among all kernels

and equal to the reciprocal of the total num-

ber of input samples. For the estimation of

the total number of kernels the reader may

refer to [8] for mathematical methods, or [6]

for a neural network approach.

2 The Vector Quantizer

We assume that the total input density p(x)

is a mixture of K Gaussian kernels

p(x) =

KX
j=1

�jfj(x); (2)

where each kernel j is the normal probability

density function

fj(x) =
1

�j
p
2�

exp[
�(x� �j)

2

2�2j
]; (3)

parametrized over its mean �j and variance

�2j , and having prior probability �j . Addi-

tionally, it must hold
PK

j=1 �j = 1, �j � 0.

The posterior probability that a new signal

x is assigned to kernel k is given by the Bayes



formula

Pfkjxg = �kfk(x)PK

j=1 �jfj(x)
; (4)

and the Bayes minimum risk rule assigns a

signal x to the kernel k with the maximum

posterior probability Pfkjxg. Based on the

above, we de�ne the VQ encoding function

c(x) to be the minimum risk kernel, i.e.,

c(x) = k if Pfkjxg = maxPfjjxg; (5)

for j = 1; : : : ;K, and the decoding function

x0(c(x)) as

x0(c(x)) = �c(x); (6)

i.e., the mean of the kernel the input signal

was assigned to.

The Maximum Likelihood procedure for the

training set T assigns to the parameters �j , �j ,
and �j of each kernel j values that maximize

the log-likelihood

L(T ) =
nX
i=1

ln p(xi) (7)

which, by applying the logarithm to (3) and

using (2) and (4), amounts to minimizing the

total distortion D of (1), with x0i = x0(c(xi))

and

�(xi; x
0

i) =
(xi � x0i)

2

�2
c(xi)

+ 2 ln�c(xi) � 2 ln�c(xi)

+2 lnPfc(xi)jxig; (8)

with c(xi) de�ned from (5) while the �rst term

(xi � x0i)
2=�2

c(xi)
de�nes the Mahalanobis dis-

tance from xi to the mean x0i = x0i(c(xi)) of

the kernel c(xi). Eq. (8) de�nes the distortion

measure of our VQ schema.

3 Estimating the unknown density

Maximizing the log-likelihood of (7) with re-

spect to �j , �j , and �2j , it can be shown [9, 10]

that recursive expressions for the estimation

of the parameters of each Gaussian kernel j

can be estimated as

�j := �j + (n�j)
�1Pfjjxg(x��j); (9)

�2j := �2j+(n�j)
�1Pfjjxg[(x��j)2��2j ];(10)

�j := �j+n�1(Pfjjxg��j); (11)

applied each time a new input signal x is ar-

rived, while Pfjjxg is the posterior probabil-

ity (4) that x is assigned to kernel j.

Substituting the number n|the cardinal-

ity of T|above with a constant l, i.e., ren-

dering the system `memoriless' to old signals,

non-stationary signal distributions can also be

handled [10]. Also, we propose here a method

that on-line seeks for the correct number of

kernels based on simple test statistics for test-

ing the hypothesis of single normality against

a two-kernel alternative.

3.1 Testing for the number of kernels

Split: We �rst look for a test statistic

to decide when a kernel should split in two.

A statistical test is needed to check the hy-

pothesis that the input samples assigned to a

particular kernel with � and � follow a sin-

gle Gaussian against the alternative that they

follow a mixture of two kernels, in which case

the single kernel should split in two.

We form a simple sequential test statistic

based on a weighted formula of the kurtosis,

or fourth moment, of a kernel j as

kj := kj+(n�j)
�1Pfjjxg

"�
x� �j

�j

�4

�kj�3

#
;

(12)

with �j and �j the current ML estimates for

the parameters of the kernel. On the hy-

pothesis that xi follow a normal distribution

N(�j ; �j) it follows that the random variable

q = kj

q
n�j=96 (13)

approximately follows normal distribution

N(0; 1), and thus we can accept the hypothe-

sis that the kernel j is N(�j ; �j) if q is su�-

ciently close to zero.

When a new kernel is created it gets a zero

value of kurtosis which is updated at each iter-

ation step from (12). The �rst time the afore-

mentionted kurtosis test is violated we split

the kernel and create two kernels with means

�+� and ���, and variances and priors both

equal to the original variance. The priors of

all kernels are then re-normalized to ensurePK

j=1 �j = 1.

Join: A reasonable criterion for joining

two neighboring kernels in one is when they

have almost the same variance and very near



means. For checking for equality of the vari-

ances �2j and �2k of two neighboring kernels j

and k we form the ratio of the larger to the

smaller variance, e.g.,

F =
�2j

�2k
; (14)

and accept the hypothesis of equal variances

if F is lower than a pre-determined threshold.

If the test for equal variances succeeds, we

subsequently check for equal means assuming

common variance �2 = �j�k , using the test

statistic

t =
p
n�j

�j � �k

�
p
2

;

which under the hypothesis of equal means

approximately follows normal distribution

N(0; 1). Similarly, we accept the hypothe-

sis of equal means if t is su�ciently close to

zero. Then the two kernels are joined in one

with mean (�j+�k)=2, variance �
2, and prior

equal to �j . The priors of all kernels are re-

normalized to unity.

Removing a kernel: A kernel j is re-

moved from the mixture when its prior prob-

ability �j is below 1=n, a threshold ensur-

ing that the terms in (9) and (10) remain

bounded. After a kernel is removed all ker-

nels should update their priors to sum one.

4 Multivariate densities

For problems of higher dimension d, Eq. (3)

generalizes for a kernel j and input vector x =

[x1; : : : ; xd] to

fj(x) =
exp[�0:5(x�mj)S

�1
j (x�mj)

T ]p
(2�)d detSj

(15)

where mj = [�j1; : : : ; �jd] is the mean of the

kernel, Sj is the covariance matrix, and detSj
denotes the determinant of Sj .

The approach we described in the previous

section can be directly applied to the multi-

variate case if we make the assumption that

in each multivariate kernel j the d compo-

nents of the input vector x are jointly normal

and uncorrelated, an assumption that results

in hyper-ellipsoidal kernels. In this case [3]

the respective covariance matrix Sj is diago-

nal and (15) can be written as the product of

the d marginal univariate Gaussians, i.e.,

fj(x) =
1

�j1 � � ��jd
p
(2�)d

exp[
�(x1 � �j1)

2

2�2j1
+� � �+�(xd � �jd)

2

2�2jd
](16)

where �2j1, . . . , �
2
jd are the diagonal elements

of Sj . For the prior updates we use (2),

(4), and (11) with the kernel densities substi-

tuted from (16), while adaptation of the ker-

nel parameters is done in each dimension sep-

arately so that the d components of mj and

the d diagonal elements of Sj of each kernel

are estimated as in the univariate case from

(9) and (10), respectively. The kurtosis test

is applied on each dimension separately and if

it succeeds for dimension i then the split ker-

nels keep all but the i components unaltered,

the latter being changed as in the univariate

case. Finally, to join two kernels, the respec-

tive tests must succeed in all dimensions.

5 Examples

To test the validity of our method we ap-

plied it to the problem of estimating a uniform

distribution, in 1-d and 2-d. This can be con-

sidered a di�cult problem for Gaussian ap-

proximators, and although theoretically [5] a

universal approximator for continuous func-

tions via Gaussians can be established, in

practice this proves to be a hard task.

In Fig. 1 we show the approximation of our

algorithm to two uniform densities, the �rst

1-d and the second 2-d. One notes that the

functions are adequately approximated near

the center, with the expected \jumps" at the

discontinuities (corners). For the �rst, the

number of employed kernels was 31, while for

the second 170. The thresholds for the statis-

tical tests for splitting, joining, and removing

a kernel, were kept to a minimum to favor the

creation of many kernels and thus a better ap-

proximation.

6 Conclusions-Discussion

We showed that the problem of minimizing

the average distortion (1) in a VQ schema

is equivalent to the ML estimation procedure

for the unknown signal density. We also de-

scribed an iterative self-organizing procedure

for estimating the unknown probability den-

sity function of the input signals. The bulk
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Figure 1: Estimating a uniform density in a 1-d problem (a), and a 2-d problem (b). Parameters:

n = 1000, a = 0:1.

of our approach lies in approximating the un-

known density with a mixture of Gaussian

kernel functions and employing the Maximum

Likelihood technique for estimating the pa-

rameters of each kernel. Moreover, by ap-

propriately splitting and joining kernels it is

possible to handle even non-stationary signal

distributions.

We may note the similarity of our kernel

means update equation (9) to the reconstruc-

tion vectors update formula of [2]

x0(c0(x)) = x0(c0(x))+��(c0(x)�c(x))(x�x0(c0(x))):
(17)

There � is the learning rate and �(�) is the pdf
of a noise added by the channel to the code

c(x) to produce a distorted code c0(x) at the

receiver. From the above relationship we infer

a similar model for the channel noise in our

VQ schema; the noise pdf over a codevector

c(x) is the Gaussian kernel pdf pc(x).
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