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ABSTRACT

The aim of this paper is two-fold. In a �rst part, we
investigate the ultimate performances of source separa-
tion in the case of BPSK and 4-PSK sources. These ulti-
mate bounds are computed by looking �rst for the most
favourable mixing matrices, for various SNRs, number
of sources and number of sensors, and then by calculat-
ing the associated error probabilities. In a second part,
we compare the behaviour of two 4-QAM source separa-
tion algorithms. One is based on the Constant Modulus
(CM) property of these sources, and the other is based
on the constance of their fourth power. The goal here is
to see what kind of improvement brings the knowledge
of the source distribution.

1 INTRODUCTION

Because of the impressive increase in the number of sub-
scribers, improvement on wireless communications has
become of prior importance. The use of spatial diver-
sity granted by multiple antennas is one of the means
that must be resorted to. Blind source separation is one
way of taking advantage of spatial diversity, without the
help of learning sequences. Tanks to blind techniques,
the transmission rate could then be increased in GSM
or UMTS mobile systems. Other applications are not
reported here.

Many algorithms have been proposed to solve blind
source separation using various criteria such as the inde-
pendence of the sources [2] [1] or their constant modulus
property [6] [5]. But the discrete character of commu-
nication signals has been exploited in the blind context
only for the last few years [4] [3]. In this paper, we are
interested in the case where the source distribution is
discrete and known.
Our goal is two-fold. First, we investigate the ul-

timate bounds of BPSK or 4-PSK source separation
(even when there are more sources than sensors). These
bounds are computed by looking for the most favourable
mixing matrix in each con�guration and by �nding the
associated error probability.

This work has been supported in part by Eurecom's indus-
trial partners: Ascom, Cegetel, Hitachi, IBM France, Motorola,
Swisscom, and Thomson CSF, and in part by the CNRS telecom-
munications program.

Second, we present a new analytical solution for the
separation of 4-QAM signals based on their distribu-
tion. Then we compare the performances of this new
algorithm with the CM analytical algorithm of [6].
This paper is organized as follows. In section 2, ulti-

mate bounds are computed in the case of one and two
sensors, and di�erent numbers of sources. In section 4,
we present our analytical solution for 4-QAM sources.
Finally, we investigate performances of this algorithm
with computer results.

Notation

As far as we know, no work has been carried out to �nd
the ultimate bounds in the case of discrete sources with
known distribution, ignoring the modulation memory.
In order for the bounds to be insensitive to the mixing

matrix, the best mixture has been considered, in terms
of error probability. In addition, the number of sources
and their distribution have been assumed to be known,
hence the name of ultimate bounds.
Assume the following baseband model :

y = Ax +w (1)

where y is the output of an array of K sensors impinged
by P independent unit-variance sources represented by
vector x, and w is a white gaussian noise N (0; �2) in-
dependent of x. Without loss of generality, we assume
that each entry of the vector Ax has a unit variance,
i.e., jak1j2 + � � �+ jakP j2 = 1.

2 BPSK SOURCE SEPARATION

2.1 Case K = 1 sensor, 1 � P � 3 sources

Now, we present some results for BPSK sources. The
sensor output can be written :

y =

PX
i=1

aixi + w

� P = 1, ai 2 lC

(
a1 = exp (i�)

P� = 1
2
erfc

�
1

�
p
2

�
� P = 2 sources, ai 2 lC

Since BPSK signals are real, it is obvious that the
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Figure 1: Ultimate bounds of BPSK source separation
with K = 1 sensor, 1 � P � 3 sources and when A is
real
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Figure 2: Ultimate bounds of BPSK source separation
with K = 1 sensor, 1 � P � 3 sources and when A is
complex

best case is obtained when x1 and x2 are on orthog-
onal axes, that is :(

A =
�p

2
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ei�
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ei(��
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�

P� = erfc
�
1
2�

�� 1
4
erfc2

�
1
2�

�
� P = 2 sources, ai 2 IR . We have:

P� =
1
2
erfc

�
a12
�
p
2

�
+ 1

4
erfc

�
a11�a12
�
p
2

�
� P = 3 sources, ai 2 IR. The error probability
takes the possible two following forms.
Case : 0 � a3 � a2 � a1 and a1 � a2 + a3

P� = 1
4

h
2 erfc

�
a3
�
p
2

�
+ erfc

�
a2�a3
�
p
2

�
+1

2
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�
a1�a2�a3

�
p
2

�i
Case : 0 � a3 � a2 � a1 and a1 � a2 + a3

P� = 1
8

h
2 erfc

�
a3
�
p
2

�
+ 2 erfc

�
a1�a2
�
p
2

�
+ 1

2

+2 erfc
�
a2�a3
�
p
2

�
+ 1

2
erfc

�
a2+a3�a1

�
p
2

�i
By exhaustive search, the error probability has been
minimized in both cases for various SNRs. The
second case is the best at low SNRs and the �rst is
the most attractive at high SNRs.

� P = 3 sources, (a1; a2; a3) 2 lC

This case is not completly solved because nei-
ther the decision areas nor the associated proba-
bility errors are easy to compute. Nevertheless,
it can be shown that the maximization of the
minimal distance between signal values leads top
6 (a1; a2; a3) = (2; i; 1); this is the optimal so-

lution for high SNRs. Because of symmetry, the
best mixing matrices have the following structure :
A = ( a1 ia2 a3 ) where a1, a2 and a3 are real. On
the other hand, P� is equal to :

P� = erfc
�

a2
�
p
2

�
+ erfc
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a3
�
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The results obtained by minimizing P� with respect
to the real triplet (a1; a2; a3) are presented in �gures 1
and 2.

2.2 Case K = 2 sensors, 1 � P � 4 sources

Here one can use the previous results obtained in the
single sensor case stating that each row of the best mix-
ing matrix is the best single sensor receiver, bearing in
mind that the mixing matrix must be full rank.

� P = 1 source

In this case, a11 = exp (i�1) and a21 = exp (i�2)
and the error probability is :

P� =
1
2
erfc

�
1
�

�
� P = 2 sources

Here, the best case is given by a diagonal matrix
with unit modulus elements so that :

P�(x1; x2) = erfc
�

1

�
p
2

�
� 1

4
erfc2

�
1

�
p
2

�

� P = 3 sources and A 2 lC

Since BPSK signals are real, one supposes that the
best mixture has the following structure :

A =

�
a1 ia2 0
0 ia3 a4

�

where a1, a2, a3 and a4 are real positive coe�cients.
The associated error probability is :

P� = 1� 1
8
erfc

�
� a1

�
p
2

�
erfc

�
� a4
�
p
2

�
erfc

�
� a2+a3

�
p
2(a2+a3)

�
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Figure 3: Ultimate bounds of BPSK source separation
withK = 2 sensors, 1 � P � 4 sources and A is complex

� P = 4 sources and A 2 lC

Here, the best case is obviously given by :

A =

�
a1 a2 0 0
0 0 a3 a4

�

where a1 =

p
(2)

2
ei�1 , a2 = ia1, a3 =

p
(2)

2
ei�2 and

a4 = ia3. The associated error probability is :

P� = 1� 1
16
erfc4

�� 1
2�

�
The results are shown in �gure 3.

3 4-PSK SOURCE SEPARATION

This case has not been completly studied. We only in-
vestigated the real mixing matrix con�gurations.

3.1 Case K = 1 sensor, 1 � P � 2 sources

� P = 1 source :

P� = erfc
�
1
2�

� � 1
4
erfc2

�
1
2�

�
� P = 2 sources, (a1; a2) 2 IR

2

With no loss of generality, we assume that 0 � a2 �
a1. The error probability is then equal to :

P� = 1
16

�
16 erfc

�
a2
2�

�
+ 8 erfc

�
a1�a2
2�

�
�4 erfc2 � a2

2�

�� erfc2
�
a1�a2
2�

�
�4 erfc � a2

2�

�
erfc

�
a1�a2
2�

��
and has been minimized by a combinatorial opti-
mization.

The results are presented in Figure 4

3.2 Case K = 2 sensors, 1 � P � 2 sources

� One source. The error probability is equal to :

P� = erfc
�
1
�

�� 1
4
erfc2

�
1
�

�
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Figure 4: Ultimate bounds of 4-PSK source separation
with K = 1 sensor, 1 � P � 2 sources and A is real.
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Figure 5: Ultimate bounds of 4-PSK source separation
with K = 2 sensors, 1 � P � 2 and A is complex.

� Two sources. The best mixing matrix is diagonal
with unit modulus entries; the error probability is:

P� = erfc
�
� 1

�
p
2

�
� 1

4
erfc2

�
� 1

�
p
2

�

The results are reported in �gure 5

4 ANALYTICAL SOURCE SEPARATION

WITH 4-QAM SIGNALS

The analytical solution to 4-QAM source separation is
based on the fact that the fourth power of the elements
of this constellation is constant. In essence, it has the
same structure as the analytical CMA presented in [6]
and may be considered as a generalization to the con-
stant fourth power signals.
Rewrite the narrow band reception model in block

form:

Y = X A+W: (2)

Denote U �V y the SVD of Y . The separation problem
consists of �nding a matrix B such that the columns of

X̂ = UB are close to 4-QAM signals. In the noiseless



case, this property means that:

(utn bp)
4 = 1; 8p; 8n (3)

where bp is the p
th column of B, and U = [u1; � � � ; uN ]t.

Let 4z be the non redundant vectorization of the sy-
metric fourth order tensors associated with any vector
z, equation (3) is then equivalent to :

4U 4bp =

2
64

1
...
1

3
75 (4)

where 4U =
�
4u1; � � � ;4uN

�t
, and t denotes transposition

(without conjugation). Now, if we multiply equation (4)
by the appropriate matrix H, we obtain, with obvious
notation:

H 4U 4bp =

2
6664
p
N

0
...
0

3
7775 ; 4UH

4bp =

2
64

0
...
0

3
75 : (5)

Therefore 4bp is in the kernel of 4UH .
In the noiseless case, the dimension of this kernel is

equal to the number of 4-QAM signals present in the
mixture Y . Let fe1; � � � ; e2g be a basis of Ker(4UH )
and note that the P solutions bp of equation (3) form
a basis of Ker(4UH) too. Thus the following relation
between ei and bp holds8><

>:
e1 =

PP

i=1 �1i
4bi

...

eP =
PP

i=1�Pi
4bi

(6)

Now let unvec42 be an operator such that unvec42(
4z) =

2z 2zt where 2z is the non redundant vectorization of
z zt. System (6) is then equivalent to :8><

>:
E1 =

PP

i=1 �1i
2bi

2b
t

i

...

EP =
PP

i=1�Pi
2bi

2b
t

i

(7)

which can be rewritten as:8<
:

E1 = 2B D1
2B

t

: : : = : : :

EP = 2B DP
2B

t
(8)

where Ep = unvec42(ep) and
2B =

�
2b1; � � � ;2bP

�
.

Therefore the search for B is equivalent to simulta-
neously diagnalize P matrices Ep. If P = 2 or in the
noiseless case, the joint diagonalization of E1 and E2 is
straightforward and su�ces to compute 2B. However, it
requires E1 to be regular. Yet, in the present case, they
are both singular; the following solution is proposed :
2B = Q�12 Q�1 where Q�1 E1Q1 = �1 is the EVD of E1,
�1 is P � P diagonal, Q�1 is the column pseudo-inverse

of Q1, and Q
�1
2 �1(Q

�E2Q)
�1Q2 is P � P diagonal.

Once 2B has been obtained its P columns give all
the solutions to the equation (3), bp being given by the
rank-one approximation of unvec(2bp).
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Figure 6: Bit Error Rates of both analytical solutions
for various SNRs

5 ALGORITHMS COMPARISON WITH

COMPUTER RESULTS

The simulations have been made using an array with
K = 2 sensors. We used P = 2 4-PSK sources whose
angles of arrival were �1 = �30� and �2 = 30�. Both
algorithms were tested with data length N = 400, over
200 trials and for various SNRs.
The results are plotted in �gure 6. The performances

are very close. Hence surprisingly, the knowledge of
the distribution doesn't bring signi�cant improvement
in the algorithm. This needs to be elucidated.
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