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ABSTRACT

This work deals with the problem of linear polyphase
blind equalization (BE), i.e. we are interested in equaliz-
ing the output of a single-input-multiple-output (SIMO)
channel, without observing its input. A recent result by
Liu and Dong [1] showed that if the sub-channel polyno-
mials are co-prime, the equalizer output whiteness suf-
�ces for the equalization of a white input. Based on
this observation, we propose a simple decorrelation cri-
terion for second-order based blind equalization. Due
to its second-order nature, this criterion is insensitive
to the distance of the input from Gaussianity, hence it
performs BE even for Gaussian or non-Gaussian in-
puts. Moreover, unlike other second-order techniques,
our approach bypasses channel estimation and computes
directly the equalizer. By doing so, it avoids the problem
of ill-conditioning due to channel order mismatch which
is crucial to other techniques. Combined to its good con-
vergence properties, these characteristics make the pro-
posed technique an attractive option for robust polyphase
BE, as evidenced by both our analysis and computer sim-
ulation results.

1 INTRODUCTION

Blind equalization of polyphase (SIMO) channels is
a �eld that has been receiving increased attention in
the recent years. Applications include fractionally-
spaced signal processing at the receiver, and/or recep-
tion through an array of sensors. Despite the early in-
troduction of polyphase receivers more than two decades
ago [2], [3], a number of important advantages they of-
fer became apparent only recently. We outline some of
these important results:

1. In [4], Tong, Xu, and Kailath showed that when the
sub-channels corresponding to the di�erent sam-
pling phases of the channel response are co-prime,
channel identi�cation is possible based solely on the
received signal's second-order statistics (SOS). This
result initiated a considerable amount of research
in the area of SOS-based BE which has lead to
many techniques that achieve BE without the use
of higher-order statistics (HOS).

2. In [5], Slock showed that under the same condi-
tions mentioned in [4], perfect (zero forcing (ZF))
equalization of linear channels is possible in the ab-
sence of noise with �nite-length �lters. This has
allowed for a better understanding of the behav-
ior of polyphase receivers. Moreover, it has lead
to new results regarding the behavior of adaptive
equalization algorithms when used with polyphase
receivers.

3. One of the most notable results which made use
of 2 above is linked to the behavior of the popu-
lar constant modulus algorithm (CMA) [6]: it was
shown in [7], [8], [9] that when fractionally-spaced,
the CMA is globally convergent in the absence of
noise (again under the co-prime assumption). This
result shows how the long-standing problem of lo-
cal minima of the CMA can be avoided if fractional
spacing and/or antenna arrays are used at the re-
ceiver.

Together with the above results, a number of prob-
lems in the proposed techniques remain. Namely, the
structure-based approaches that soon followed [4], such
as [5], [10], [11] su�er from lack of robustness with re-
spect to the estimated channel order: order mismatch
results in wrong dimensions of the signal or noise sub-
space, which may lead to severe performance degrada-
tion. As a result, alternatives to structure-based meth-
ods such as [12], [13] have been proposed. These tech-
niques rely on SOS statistical criteria (as opposed to the
structure of the covariance matrix) in order to estimate
the channel response. Even though they are more robust
to the problem of channel order mismatch, a drawback
is that they need to estimate the channel �rst in order
to compute the equalizer. This may a�ect performance
if not done judiciously, and adds extra complexity to
the equalizer design, as opposed to direct BE algorithms
(such as the CMA) that compute directly the equalizer.
An interesting twist in the BE literature came recently

when Liu and Dong showed in [1] that in the case of a
white input, the equalizer output whiteness is a neces-
sary and su�cient condition for BE. Based on this the-
orem, direct SOS BE algorithms were proposed in [14],



[15]. These algorithms o�er the double bene�t of being
insensitive to both the input distance from Gaussianity
(unlike HOS-based algorithms such as the CMA) and to
channel order mismatch (unlike most SOS-based meth-
ods), as they do not require channel estimation. In this
paper we focus on the adaptive algorithm proposed in
[15] and study its performance in terms of convergence
behavior.

2 A WHITENING APPROACH FOR

POLYPHASE BLIND EQUALIZATION

The sampled polyphase output of a SIMO (1-input-m-
output) channel can be written in vector notation as
follows

x(n) =

M�1X
k=0

s(n� k)h(k) + b(n) (1)

where the vectors x, h, b are all m� 1 and denote the
polyphase received signal, channel, and additive noise,
respectively. Each of the elements of these vectors cor-
responds to a di�erent phase (sampling instant and/ or
antenna element). The channel h is assumed to be time-
invariant and FIR of lengthM , whereas the input fs(n)g
is assumed to be an i.i.d. symbol sequence, and b(n) de-
notes the i.i.d. noise sequence. Stacking K successive
samples inX(n) = [xT (n);xT (n�1); :::;xT (n�K+1)]T ,
B(n) = [bT (n);bT (n�1); :::;bT (n�K+1)]T yields the
well-known linear model, where both channel and sym-
bols are unknown quantities:

X(n) = H[s(n); ::; s(n�K �M + 2)]T +B(n) (2)

where

H =

0
B@
h(0) � � � h(M�1) 0 � � � 0

...
0 � � � 0 h(0) � � � h(M�1)

1
CA
(3)

is the Sylvester-like channel matrix of size mK �

(M+K�1). The output of a linear multichannel re-
ceiver with mK taps (here denoted W ) is de�ned by:

y(n)
def
= WHX(n)

In the above T and H denote transpose, and Hermitian
transpose, respectively.
The following theorem regarding the blind equaliz-

ability of SIMO channels appeared recently in [1] for
the case of a white input s(n):

Theorem 1 (Whitening Theorem) Assuming that the
input s(n) is white, that the channel matrix H has full
column rank (classical length and zero condition [5]),
and that there is no additive noise, the equalizer output
y(n) will be white if and only if zero forcing equaliza-
tion has been achieved, up to some delay d, gain �, and
unknown phase rotation �, i.e.

y(n) = �ej�s(n� d) (4)

It is well known that this result does not hold in the
traditional single channel case. The reason is that per-
fect equalizability (hence output whiteness) in the single
channel case requires an IIR receiver structure. Thus
output whiteness can indeed be achieved, however the
IIR structure allows for an arbitrary all-pass �ltering
ambiguity.
The key issue here is that multichannel (polyphase)

equalizability can be achieved with a �nite length (FIR)
equalizer, for exampleW can be drawn from the pseudo-
inverse of H. Enforcing the FIR property of the com-
bined channel-equalizer removes the all-pass ambiguity,
since non trivial all-pass �lters cannot be FIR! In the
sequel we will see how this important Theorem can lead
to robust SOS-based methods for direct adaptive blind
equalization.

3 A DECORRELATION ALGORITHM FOR

POLYPHASE BLIND EQUALIZATION

Based on the above theorem, a direct BE criterion can
be formulated, so as to force the equalizer output to be
white, as follows (see [15]):

min
W

J(W ) = (r0 � 1)
2
+ �

N�1X
l=1

jrlj
2 (5)

where rl is the autocorrelation of the equalizer output
de�ned as E(y(k)y�(k� l)), and � is a weighting scalar.
N is the maximum achievable delay l for which rl is non-
zero (in the absence of noise). Denoting the channel-
equalizer cascade as G(z) =

Pm

i=1Hi(z)Wi(z), where
Hi(z), Wi(z) denote the polynomials corresponding to
the i-th phase of channel and equalizer, respectively, the
equalizer output can be written in the absence of noise
in the z-domain as Y (z) = G(z)S(z), or in the time
domain as y(n) = GTS(n). Then G = [g1 � � � gN ]

T and
S(n) = [s(n) � � � s(n�N+1)]T will have N coe�cients
each.
The corresponding stochastic gradient adaptive algo-

rithm that implements the criterion (5) is given by

W (k + 1) =W (k)� �[(r(0) � 1)y�(k)X(k)+

�

N�1X
l=1

r�(l)y�(k � l)X(k)]
(6)

In order to implement (6) in practice, we need to esti-
mate the correlation terms rl, for example with simple

rectangular-window averaging: r̂l =

�X
i=1

y(i)y�(i�l).

Notice that despite the second-order nature of the cri-
terion (5), if we choose � = 0 and � = 1 (instantaneous
averaging), (6) is identical to the CMA 2-2 algorithm.
However for � > 1 and/or � > 0 the algorithm (6) is
di�erent from the CMA which is memoryless and uses
instantaneous HOS of the equalizer output to penalize
non-Gaussianity. This will be evidenced in section 5 by
the ability of (6) to equalize super-Gaussian signals.



4 CONVERGENCE ANALYSIS

In order to demonstrate the convergence behavior of the
algorithm (6), we will examine the stationary points of
the cost function in (5). As is typically done in the
analysis of BE cost functions, we will analyze J in the
cascade domain, hence J will be denoted as a function
of the cascade vector: J(G). The obtained results can
be then easily translated to the equalizer domain W , as
we assume that the zeros-and-length condition is sat-
is�ed (this guarantees a one-to-one mapping between
the stationary points in the G and W domains, since in
this case H is full column rank). We will also assume
the absence of additive noise in our analysis. Due to
its simplicity and useful insight, we will only consider
the simple case of two coe�cients in the global response
(N = 2). In the following we also �x for simplicity
� = 2, and the input variance �2s = Ejs(n)j2 = 1.

4.1 Analysis

In this case G = [g1 g2]
T and y(n) = g1s(n)+g2s(n�1).

The cost function in (5) then takes the form:

J(G) =
�
jg1j

2+jg2j
2�1

�2
+2jg1j

2jg2j
2 (7)

and the stationary points of J(G) are found from
@J(G)

@g�
i

= 0 for i = 1; 2, which gives

2g1(jg1j
2 + 2jg2j

2 � 1) = 0
2g2(jg2j

2 + 2jg1j
2 � 1) = 0

(8)

Eq. (8) has four classes of solutions. The �rst two
classes are

�
jg1j

2 = 1 ; g2 = 0
�
and

�
jg2j

2 = 1 ; g1 = 0
�

and constitute the global minima of the cost function in
(7). The third \class" is the solution (g1 = 0 ; g2 = 0)
and constitutes a local maximum: denoting a general
perturbation setting in the 2-D plane around [0 0] aseG = [��1 � �2], where �1, �2 are small positive con-

stants, we �nd that J( eG) ' 1�2(�21 + �22) < J([0 0]), 8
(�1; �2). Hence the setting G = [0 0] is a local maximum.
The fourth class of solutions is:

jg1j
2 = jg2j

2 = 1=3 (9)

Notice that J(G) evaluated at the setting (9) equals
J(G0) = 1=3. In order to show that the solution (9) is a
saddle point, we �rst consider the following perturbation
setting:

j eg1j2 = 1=3+�
j eg2j2 = 1=3��

(10)

where � is a small positive constant. The value of J at
the setting (10) equals 1=3�2�2 < 1=3 = J(G0). Hence
a setting of the type (9) cannot be a local minimum.
Now we consider the following perturbation:

j eg1j2 = 1=3+�
j eg2j2 = 1=3+�

(11)

The value of J at the settings of the type (11) equals
1=3+6�2 > J(G0). Hence a setting of the type (9) can-
not be a local maximum either. As a result, it can only
be a saddle point. We summarize the above analysis in
the following theorem:

Theorem 2 (Convergence in the case N = 2) In the
case where the cascade response G has only two coe�-
cients (N = 2), � = 2, �2s = 1 and no additive noise
is present, the cost function (5) has no undesired local
minima. Its only minima are the optimal global settings
G1 = [ej� 0] and G2 = [0 ej� ], where �1, �2 are arbi-
trary phases.

4.2 Discussion

According to Theorem 2, in the case N = 2, the al-
gorithm (6) will be globally convergent to its optimal
settings in the absence of noise. Notice also that the cri-
terion achieves gain identi�cation, whereas it results in
a phase ambiguity that appears typically in blind equal-
ization algorithms. Since the zeros-and-length condition
has been assumed (in order to satisfy Theorem 1), this
global convergence property will re
ect to the equalizer
domain W as well. This result is important as the role
of local minima is known to be crucial for several blind
adaptive algorithms. The extension of Theorem 1 to the
case N > 2 is the subject of current research.
In order to demonstrate the shape of the saddle points

predicted by the above analysis, we consider the real
case, i.e. g1, g2, are both real coe�cients. Figure 1
shows the shape of the cost function J(G) around a real
setting G0 of the form (9). We have superimposed on
this �gure the level of the center value J(G0) = 1=3. As
can be seen from the �gure, G0 is clearly a saddle point
of J(G). Notice also that the positive slope of the saddle
point can be seen in Figure 1 to be three times larger
than the corresponding negative slope, as predicted by
the analysis in section 4.1.

5 COMPUTER SIMULATIONS

In order to demonstrate the advantages of the algorithm
(6) that stem from its second-order nature, we simulate
a super-Gaussian input fs(k)g that equals 0 with prob-
ability 3=4 and otherwise takes on equi-probably one of
the four values �1�j. Notice that s(k) is zero-mean and
has a positive kurtosis (K(s) = 3=4). s(k) is transmitted
through a single-input-two-output polyphase channel,
whose two phases have the following impulse responses:
h1 = [1 0:5], h2 = [1 2] (notice that the polynomials
H1(z) and H2(z) have no common roots, thus making
SOS-based blind equalization possible). The signal is re-
ceived with an SNR of 30 dB on each branch, and then
passed through a two-phase fractionally spaced equalizer
of 3 taps/phase. In two separate experiments, the equal-
izer is updated through the CMA and the decorrelation
algorithm (6), respectively. In both cases the equalizer
is center-spike initialized and the stepsize � = 4� 10�4.



−0.01

−0.005

0

0.005

0.01

−0.01

−0.005

0

0.005

0.01
0.333

0.3332

0.3334

0.3336

0.3338

0.334

e
1

A saddle point

e
2

C
os

t f
un

ct
io

n 
ar

ou
nd

 |g
1|2 =

|g
2|2

Figure 1: A saddle point (N = 2)

We also use instantaneous averaging (� = 1) for the al-
gorithm (6). We evaluate the algorithm performance by
plotting the evolution of the closed-eye measure of the
equalizer output as the algorithm adapts. As can be
seen in Figure 2, the algorithm (6) manages to quickly
open the channel eye and retrieve the transmitted con-
stellation, in accordance with our expectations. On the
other hand, the CMA fails to equalize the signal due to
its super-Gaussian nature.

6 CONCLUSIONS

We have considered the problem of blind equalization of
linear co-prime polyphase channels. Based on a recently
shown whiteness theorem, we proposed a statistical cri-
terion that relies on the SOS of the equalizer output in
order to achieve BE of a white input. The optimization
of this criterion can be done with a simple (decorrela-
tion) algorithm. This approach is robust in the sense
that the performance does not depend on the input dis-
tance from Gaussianity or on the estimation of the chan-
nel order. Moreover, a convergence analysis in the case
of two coe�cients in the combined channel/equalizer do-
main has shown the global convergence property of the
proposed algorithm. These positive features have been
corroborated by computer simulated results. We be-
lieve that these characteristics make the decorrelation
approach attractive for a number of BE applications.
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