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Abstract

It is well known that the performance of the
Constant Modulus  Algorithm  (CMA)  for
interference cancellation is limited by a so-caled
notch compromise. This paper presents a new
recursive structure based on Godard's Criterion for
blind interference suppression which overcomes this
drawback. This interference-regjection structure is
based on the linear prediction of the interference.
The effectiveness of the new structure is studied in
the presence of Co-Channel Interference (CCl) and
additive Gaussian noise. It is shown that this
structure can cancel predictable CCI.

1. Introduction

Interference rejection is an important domain of
research since it alows a more efficient utilisation
of the available spectrum. This paper is concerned
with the problem of the reception of a constant
modulus signal, such as Frequency Modulation
(FM) or Quadrature Amplitude Modulation
(QAM), and in the presence of strong Co-Channel
Interference (CCI). The interference is assumed to
be narrowband. In this case, constant modulus
blind equalizers can compensate partly the CCI [1-
2]. The family of constant modulus blind
equalizers was presented in 1980 by Godard, and
in 1983 by Treichler [1] for FM signals (Constant
Modulus Algorithm, CMA). The CMA uses a
classical linear egualization scheme : the channel
output is filtered by a Finite Impulse Response
(FIR) filter whose coefficients are calibrated to
minimise a cost function of the form:

Jpa = EL(V()P - 1)°] D

where E[%} denotes statistical expectation, p

and q are positive integers, v(n) is the equalizer
output given by v(n) = X'(n)H(n), where t indicates
transpose, H'(n) = (ho(n), ..., hma(n)) is the
equalizer tap weight vector and
X'(n) = (x(n), ..., x(n-M+1)) is the equalizer input
data vector. The classica versions of the CMA are

the CMA(2-2) and the CMA(1-2) for which
p=2=2andp =1, q=2respectively.
Using a stochastic gradient algorithm as an

updating rule, the equalizer coefficients are
adapted by :

H(n+1) = H(n) - m{v(n)- TIv(n)]} X*(n) (2

where T[v(n)] is a non-linear function depending

on the cost function. For example, the non-linearity

which corresponds to the CMA(1-2) isgiven by :
v(n)

Tlv(nl= V)l ©)

Since the origina proposition of the CMA,
there have been extensive studies on the CMA.
Treichler and Larimore have examined a problem
that arises when using CMA to suppress narrow-
band interference [2]. If both the interferer and the
signal of interest have constant envelopes, then it is
possible to find two different filter solutions, one
which suppresses the interferer and another which
captures the interferer and suppresses the desired
signal.
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Figure 1 : CMA adaptive filter

In order to avoid the problem of capture,
Ferrara [4] proposes to minimise a modified cost
function :

312 = E[(V(n)| - b)°] (4)

where b is the amplitude of the target signal, given
that it is approximately known or measurable. To
prevent the CMA from locking to an interferer and
to have a linear phase characteristic, the tap



weights of the filter are constrained to be
symmetric with respect to the center weight whose
valueis constrained to unity.

Even with those constraints, an interference-
rejection filter based on the Godard's criterion is
not able to notch out efficiently a CCIl. This
phenomenon can be explained by the Notch
Compromise [1]. In notching the interference, the
equalizer tends to distort the desired signal. Hence,
the equalizer tends to a compromise, which results
in poor performance in the presence of CCI.

2. A predictive approach

Decision Feedback (DF) filter is a well known
structure for interference suppression [3]. The
main idea of DF is very simple. The output of the
receiver can be viewed as an estimate of the target
signal. So, one can subtract this estimation from
the received signal to isolate the interference. The
output of this subtractor can be used as the input of
a linear predictor. So, the DF filter attempts to
whiten the interference and the noise only. The
desired signal does not pass through the
suppression filter, and then remains undistorded.

In this paper, we propose to use the same
principle with the more general bussgang criterion
[5]. Indeed, the output of a bussgang non-linearity
can aso be viewed as an estimate of the target
signal. Particularly, the Gordard's criterion can be
used in a DF structure in order to suppress
narrowband interference. The principle of this
« Predictive » CMA is depicted in Figure 2.
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Figure 2 : principle of the Predictive CMA

To illustrate this idea, the case of a digita
signal reception corrupted by a finite sum of
Continuous Waves (CW) plus Additive White
Gaussian Noise (AWGN) is considered.

The received signal x(n) is given by the sum of
three independent stationary random signals :

x(n) =b d(n) + 1(n) +w(n) ()

where d(n) is a unit power, independent sequence
of 4-QAM data symbols, w(n) is AWGN of

variance s 2 and :

L
I(n)=3 a, epiw,n+q,) (6)

k=1
where a, are constant amplitudes, qx are
independent random phases uniformly distributed
in [0,2p], and wg are the normalised pulsation of
the interference. In this paper, we also assume that

b is known. So, we choose to minimise :

I12= E[(ly(n)| - b)*] (7
The CMA non-linearity is then

o= b X =) ()
ly(n)|

By introducing the phase in the CMA cost
function, one obtains :

. .
Vi= Eéy(n)- b oyl & = L 20
[yl

9

with y(n) =x(n)- §(n) and z(n)=x(n)- s(n).
So, we have

3',= E[[s(n)- §(n)’] (10)

with §(n)=B'(n)S(n- 1) where S'(n-1) =
(s(n-12), ..., s(n-N)) and B(n) = (bs(n),.., bn(n)) is
the linear predictor.

It should be noted that the signal s(n) is a non-
linear function of its previous estimation :

s(n) = x(n)- TIx(n) - §(n)] (11)

The theoretical performance analysis of this
scheme is complicated by this non-linear
dependence. However, for such agorithms, a usual
approach is to commute between a CMA to a
Decision Directed (DD) adaptation. The transition
can be hard or soft. Far from the convergence
point, the filter is adapted with the CMA(1,2). In
this mode, if the non-linear function is sufficiently
hard, one can assume that s(n) does not depend on
§(n) too strongly. Near convergence, the filter is
adapted through a DD agorithm. In this mode, a
standard approach is to assume that the decision is
correct :

Tly(n)] =b d(n) (12)
If this assumption holds,
s(n) = 1(n) +w(n) (13)

and the problem of reducing interference is
equivalent to the linear prediction of interference
plus noise. Using (10) and (13), the optimum tap
weight vector is given by the well known Wiener-
Hopf equation :

Bow = R'P (14)



where R = E[S(n-1)S"(n-1)] is the covariance
matrix, P = E[s(n)S*(n-1)], and the superscript " is
the conjugate transpose.

The minimum mean-square error is given by :

L
‘]Iopt:éai+ssv' PHBopt (15)
k=1
If we introduce the power spectral density D(w)
of the interference I(n), it can be deduced from (10)
and (13) that :

I, :% pdA(w)|2D(w)dw +s2(1+ B"B) (16)
-p

with A(w) =1- B(w) , where B(w) denotes the
frequency response of the filter B.

This expression shows that the interference can
be totally eliminated in the extreme caseof s 2 =0

and as soon as N 3 L. In comparison with the
Transversal CMA, the performance is only
bounded by the noise, and not by the notch
compromise.

3. Computer Simulations

In order to verify the convergence behaviour of
the proposed scheme, we consider the presence of
oneinterferer, i.e. L = 1in (6). Hence, the received
signal is:

Xx(n) = b d(n) + a,expjlw,n+f,) + wn)
17)

With the proposed structure, it is clear that only
one complex coefficient is needed (N = 1) to
compensate perfectly an CW interference in the
absence of noise. It is straightforward from (14)
and (15) that

2

a .
blopt = m@(p(lwl) (18)
2 2 a;
[ — 1
and J',=a;+s, - T4s? (19)

(18) and (19) show the influence of the noise on
the steady state. It should be noted that b; lies on
the unit circle when the noise vanishes.

A computer simulation is realised with a; =
1.0, s2 =0.01 and w; = 0.2 p. The filter B is
adapted through a stochastic gradient algorithm :

B(n+1) = B(n) + de(n)S*(n- 1) (20)
where d is a positive step size,
e(n) =y(n) - ﬁ far from convergence and

e(n) =y(n) - bd(n) near the convergence.
The performanceindex J'; ; is estimated using :

2
y(n)
y(n)- b
ly(n)|
with J'1,(0) = 1, | = 0.98, while the switching
threshold is 0.1 (- 10 dB).

In Figure 3, we have plotted two learning
curves, one for the real part and one for the
imaginary part of b;. We observe that both curves
converge in average to the theoretical value given
by (18).

J12n) =1 J12(n-1)+(1-1)
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Figure 3 : real and imaginary part of b;
In Figure 4, the convergence behaviour of the

Predictive CMA is shown. Here we also observe a
good agreement between theory and experiment.
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Figure 4 : convergence behaviour of the
Predictive CMA

The Predictive CMA (PCMA) is also compared
to its transversal counterpart. The received signal
x(n) is given by (5), and we have sdlected the



following parameters: b=1, s 2 = 0.01 and
I(n) =20e%™ +18e°™ +08e™™  (21)

The PCMA with N = 6 and d = 0.005 is compared
to the Transversal CMA (TCMA), with M = 65
coefficients and m= 0.00005.
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Figure 5 : Convergence behaviours of the
Transversal and Predictive CMA

From the simulation (Fig. 5), it should be
noted that the TCMA has high residua error due
to the notch compromise, even with a great number
of coefficients. This problem is illustrated on
Figure 6.
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Figure 6 : Frequency response of the
Transversal CMA

Moreover, the linear prediction of interference
allows better performance with fewer coefficients.
Figure 7 shows that the filter B converges to the
classical linear predictor.
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Figure 7 : Frequency response of 1-B(w)

4. Conclusions

A new scheme for blind single-channel
interference rejection is proposed. Assuming that
the amplitude of the target signal is approximately
known, the proposed scheme overcomes the notch
compromise. Far from convergence the proposed
Predictive CMA is adapted to minimise a CMA
cost function, and near convergence, a DD
approach is used. With the standard assumption
that the decision is correct, the problem of reducing
interference is equivalent to minimising a mean
square prediction error. More generdly, the
proposed principle can be applied to the other
Bussgang agorithms.
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