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ABSTRACT

The more promising results to date in blind equaliza-
tion are restricted to so-called sufficient-order settings,
in which all configurations in the combined (channel-
equalizer cascade) impulse response space are attain-
able for some setting of the equalizer coefficients. Here
we address issues related to equalizer undermodelling, in
which only a proper subset within the combined impulse
response space is attainable by adjusting the equalizer
coefficients. We derive an analytic characterization of
stationary points for the Godard and Shalvi-Weinstein
criteria in undermodeled cases, an establish relations to
the convergence of super-exponential algorithms in un-
dermodeled cases.

1 INTRODUCTION

Blind adaptation algorithms for channel equalization
purposes are an attractive alternative to their training
sequence based counterparts, as blind methods obviate
the need to send training sequences. The more promis-
ing results to date on blind equalization concern frac-
tionally spaced systems: Provided the equivalent chan-
nel impulse response is strictly finite in duration, the
subchannels have no common zeros, and the equalizer
impulse response length is chosen adequately, the more
popular blind equalization criteria can claim to be free
from local minima traps [1]. Although multiple minima
are generically present, each achieves perfect channel e-
qualization.

Here we examine a more realistic undermodeled sce-
nario (in which “undermodeled” is defined in the next
section), which arises in practice if the equalizer length
is chosen insufficient, and/or the subchannels have com-
mon zeros, and/or background noise is present, among
other harsh realities. The idealized scenario, featuring
multiple minima with each achieving perfect channel eq-
ualization, is deformed into a more daunting scenario, in
which multiple minima are still present, but now offering
disparate performance levels.

We present in this paper a characterization of station-
ary points, in undermodeled cases, for a family of blind
equalization criteria. The family includes the popular

Godard [2] (or CMA [3]) and Shalvi-Weinstein [4] crite-
ria, as well as the super-exponential [5] algorithms. For
ease of notation, we consider real channels and signal
constellations in this work; the case of complex signal
constellations and complex channels is detailed in [8].

2 PROBLEM SETTING

We review in this section some basic concepts and con-
siderations for the following channel-equalizer cascade:
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Figure 1: Channel-equalizer cascade

The equalizer input is obtained after demodulation
and sampling of the receiver output, giving the N -
element vector

ui =
∑

k

hk ai−k

where {hk} is the single-input–N -output channel im-
pulse response, and {ai} is the source sequence.
The baud-rate case corresponds to N = 1 and the
fractionally-spaced case corresponds to N ≥ 2. The
equalizer output is

yi =
L∑

k = 0

gk ui−k

in terms of the N -input–single-output impulse response
{gi}, of length L + 1.

The combined response {sk}, which maps the source
sequence {ai} to the equalizer output {yi}, is the con-
volution of {hi} and {gi}:

sk =
L∑

i =0

gi hk−i



In matrix form this becomes
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It is clear that the vector s is restricted to the range
space of the matrix H; this range space is denoted SA

as in [1]. We denote by PA the orthogonal projection
operator onto SA; this may be written as H(HT H)]HT ,
where superscript ] denotes (pseudo-) inversion.

An equalizer {gi} will be denoted sufficient order if
PA = I (the identity), and undermodeled if PA 6= I. In
the sufficient order case, an arbitrary configuration in
the combined response can be attained for some setting
of the equalizer coefficients {gi}, including an ideal re-
sponse of the form

s = en
∆= [· · · , 0, 1︸︷︷︸

n

, 0, · · ·]

where n is any integer; this combined response repre-
sents a pure delay of n samples. The undermodeled
case will, in general, preclude the possibility of such an
ideal combined response being attainable.

A popular criterion for equalization, originating in
Donoho’s work [7], involves normalized cumulants of the
form cum2p(yi)/[cum2(yi)]p, in which cum2p(·) is the cu-
mulant of order 2p of a random variable. If the source
{ai} is i.i.d., then

cum2p(yi)
[cum2(yi)]p

=

(∑
k

s2p
k

/(∑
k

s2
k

)p)
︸ ︷︷ ︸

[D2p(s)]2p

cum2p(ai)
[cum2(ai)]p

involving the multiplicative factor

D2p(s) =
‖s‖2p

‖s‖2

which in turn is the ratio of different sequence norms

‖s‖2p =



(∑

k

|sk|2p
)1/2p

, 2p < ∞;

sup
k

|sk|, p = ∞.

Maximizing | cum2p(yi)/[cum2(yi)]p|, as in the Shalvi-
Weinstein algorithm [4], amounts to seeking the max-
imum of D4(s) if the source is i.i.d., while the same
applies to the Godard algorithm [1] if in addition the
source has a negative fourth-order cumulant. The fol-
lowing properties may be shown:

• D2p(αs) = D2p(s) for any nonzero scalar α;

• 0 < D2p(s) ≤ 1 for all s 6= 0, and D2p(s) = 1 if and
only if s = αen with n any integer;

• In the sufficient order case (PA = I), each local
maximum of D2p(s) is of the form s = αen, for any
p ≥ 2.

For the undermodeled case PA 6= I, by contrast, the
set of maxima varies with p. A characterization of sta-
tionary points, obtained under the constraint that s be
restricted to SA, is the subject of the next section.

3 STATIONARY POINTS OF D2p(s)

We begin with some vector notation which will simplify
further expressions. Given two vectors r and s (attain-
able or not), their inner product is denoted

〈r, s〉 =
∑

k

sk rk,

and their Hadamard (or componentwise) product will
be denoted

r � s, with kth component [r � s]k = rk sk.

The Hadamard exponent follows similarly as

s�m = s � · · · � s︸ ︷︷ ︸
m terms

whose kth component is sm
k .

Theorem 1 Let PA be the orthogonal projection opera-
tor onto SA. A candidate s ∈ SA is a stationary point
of D2p(s) if and only if

PA

(
s�(2p−1)

)
= αs, for some scalar α.

If s is scaled to unit `2 norm, then 2p
√

α = D2p(s), the
value obtained at the stationary point.

Proof: If s and r are two vectors in SA, then q(t) = s+tr
remains in SA for all t. We introduce the moments of
orders 2 and 2p of q(t) as

m2(t) =
∑

k

|qk(t)|2, m2p(t) =
∑

k

|qk(t)|2p,

and we suppose that s is scaled to unit `2 norm for
simplicity, giving m2(0) = 1.

Introduce now the functional

F2p

(
q(t)

)
=
[
D2p

(
q(t)

)]2p

=
m2p(t)
[m2(t)]p

.

A candidate s ∈ SA will be a stationary point of D2p

if and only if the directional derivative of D2p

(
q(t)

)
at

q(0) = s vanishes in all directions in SA:

dF2p

(
q(t)

)
dt

∣∣∣∣∣
t =0

= 0, for all r ∈ SA.



Since m2(0) = 1, a direct calculation gives

dF2p

dt

∣∣∣∣
t =0

= m′
2p(0) − p m2p(0)m′

2(0)

= 2p
(∑

k

s2p−1
k (rk − 〈s, r〉sk)

)
= 2p

〈
s�(2p−1), r− 〈s, r〉s

〉
Equating this to zero results in the orthogonality condi-
tion s�(2p−1) ⊥ (r − 〈s, r〉s).

Let now S⊥
A denote the orthogonal complement to the

set of attainable responses, and likewise decompose SA

into a one-dimensional subspace colinear with a candi-
date s ∈ SA and its resulting orthogonal complement:

SAs
∆= {x ∈ SA : x = αs for some scalar α}

S⊥
As

∆= {x ∈ SA : x ⊥ s}.

The entire vector space then admits the orthogonal de-
composition SAs ⊕ S⊥

As ⊕ S⊥
A .

Now, for all r ∈ SA, the term r − 〈s, r〉s is restricted
to S⊥

As, because s has unit `2 norm. The orthogonality
condition s�(2p−1) ⊥ (r− 〈s, r〉s) then holds if and only
if the projection of s�(2p−1) along S⊥

As vanishes. This
amounts to saying that the projection of s�(2p−1) onto
SA reduces to its projection onto SAs:

PA

(
s�(2p−1)

)
= αs, for some scalar α.

With s scaled to unit norm, finally, we see that

α = α〈s, s〉 = 〈s,PA

(
s�(2p−1)

)
〉

= 〈s, s�(2p−1)〉 because s ∈ SA

=
∑

k

s2p
k = [D2p(s)]2p,

which completes the proof. �
For the sufficient order case, PA = I, and the state-

ment of Theorem 1 reduces to s�(2p−1) − αs = 0, or

sk(s2p−2
k − α) = 0, for all k.

This says that all nonzero terms have the same ampli-
tude (= 2p−2

√
α ). For the undermodeled case (PA 6= I),

we instead have s�(2p−1) − αs = b for some b ∈ S⊥
A .

Since b is not known a priori, this relation does not
reveal the form of s. Accordingly, the next section de-
velops an iterative procedure which converges to a local
maximum of D2p(s) within SA.

We may remark that the maxima of the limiting crite-
rion D∞(s), obtained by letting p → ∞, admit a simple
analytic characterization: Each maximum of D∞ yields
(to within an arbitrary scale factor) a Wiener combined
response of the form s = PA(en). A compact derivation
of this result is submitted in [8].

4 CONSTRUCTION OF MAXIMA OF D2p(s)

The stationary points fulfilling Theorem 1 may be iden-
tified as the fixed points of a nonlinear map q = T2p(s),
which sends a unit sphere of SA to itself, defined as fol-
lows:

1. Take s ∈ SA, scaled to unit norm: ‖s‖ = 1 (the
choice of norm is arbitrary for now);

2. Project its Hadamard exponential onto SA:

v = PA(s�(2p−1));

3. Scale the result to unit norm: q = v
/
‖v‖ (using

the same norm as in step 1).

It is straightforward to check that the fixed points of
this map (i.e., those unit-norm s in SA for which q =
T2p(s) = s) are precisely the stationary points fulfilling
Theorem 1. The following inequality applies whenever
s is not a fixed point.

Theorem 2 Let s ∈ SA be scaled to unit norm. If q =
T2p(s) 6= s, then D2p(q) > D2p(s).

Before presenting a proof, two remarks are in order:

Remark 1: It follows readily that the iterative procedure

s(i+1) = T2p(s(i)), (1)

in which the subscript (i) denotes the iteration num-
ber, will approach a local maximum of D2p(s), save for
an exceptional set of initial conditions on s(0).1 Which
maximum is approached depends on the initialization.

Remark 2: In the sufficient order case (PA = I), the
iteration (1) reduces to the super-exponential algorith-
m proposed by Shalvi and Weinstein [5]; if the term of
largest amplitude of s(0) is in position n, then successive
iterates s(i) converge to en at a super-exponential rate.
(If one considers the `∞ norm in steps 1 and 3, then
‖en−s(i+1)‖∞ = ‖en−s(i)‖2p−1∞ , which is contractive be-
cause if s0 has its term of largest amplitude in position n,
and is scaled such that ‖s(0)‖∞ = 1, then ‖en−s(0)‖∞ <
1). For the undermodeled case (PA 6= I), the itera-
tion (1) may be found in [5, eqs. (22)–(24)], proposed
therein as an approximation within SA to the super-
exponential convergence algorithm; see also [6]. Shalvi
and Weinstein argue that if PA(s�(2p−1)

(i) ) ≈ s�(2p−1)
(i)

for all i, then the trajectory in question should still
converge to something resembling a Wiener response.
Not specified in [5], though, is how the approximation
PA(s�(2p−1)

(i)
) ≈ s�(2p−1)

(i)
should be quantified to ensure

convergence. The proof of Theorem 2 to follow, and
hence the convergence inference of the previous remark,
appeals to no approximation.

1The exceptional set will include, e.g., all saddle points and all
crest lines leading to such saddle points.



Proof: For convenience, we assume `2 normalization
in the algorithm: ‖s‖2 = ‖q‖2 = 1. The inequality
D2p(q) > D2p(s) will then follow by showing that∑

k

|qk|2p >
∑

k

|sk|2p, whenever q = T2p(s) 6= s.

We begin with the identity∑
k

|qk|2p −
∑

k

|sk|2p

= 〈q�(2p−1), q〉 − 〈s�(2p−1), s〉
= 〈q�(2p−1) − s�(2p−1), q〉 + 〈s�(2p−1), q− s〉 (2)

The proof proceeds in two steps:

1. We shall first show the generic inequality

〈q�(2p−1) − s�(2p−1), q〉 ≥ (2p − 1)〈s�(2p−1), q− s〉

valid for any two vectors q and s. This will then
give, with respect to (2),∑

k

|qk|2p −
∑

k

|sk|2p ≥ 2p 〈s�(2p−1), q− s〉

2. We shall then recognize that

〈s�(2p−1), q− s〉 > 0

whenever q = T2p(s) 6= s, by virtue of q being a
scaled projection of s�(2p−1).

For the first part, let x = q − s; a direct calculation
shows that

〈q�(2p−1) − s�(2p−1), q〉 − (2p − 1)〈s�(2p−1), q− s〉

=
∑

k

(
(sk + xk)2p − s2p

k − 2p|sk|2p−1xk

)
=

∑
k

F (sk, xk) (3)

in terms of the two-variable polynomial

F (s, x) = (s + x)2p − s2p − 2p s2p−1x.

We show now that F (s, x) ≥ 0 for all real s and x. Let
f(s, x) denote the partial derivative with respect to x:

f(s, x) ∆=
∂F (s, x)

∂x

= 2p
(
(s + x)2p−1 − s2p−1

){> 0, x > 0;
< 0, x < 0.

We observe that F (s, 0) = 0 for all s, so that

F (s, x) =



∫ x

0

f(s, ξ) dξ, x > 0;

−
∫ 0

x

f(s, ξ) dξ, x < 0.

Since the sign of the integrand is the sign of x, we obtain
F (s, x) ≥ 0 for all s and x. The sum (3) is thus com-
prised of nonnegative terms, which gives the first part
of the proof.

For the second part, let r vary over all vectors in SA

of unit `2 norm. It is straightforward to check that the
maximum of 〈s�(2p−1), r〉 is attained if and only if r =
v/‖v‖2, where v = PA(s�(2p−1)). Since q is precisely
the scaled projection v

/
‖v‖2, while s 6= q is not, the

second part now follows, to complete the proof. �

5 CONCLUDING REMARKS

We have derived a characterization of stationary points
for a family of blind equalization criteria in undermod-
eled cases. The characterization is set in the combined
response space, whixh is a more relevant thanthe equal-
izer coefficient space. The family includes the Godard
and Shalvi-Weinstein algorithms, and also leads to the
first convergence proof for super-exponential algorithms
in undermodeled cases. Extensions of these results to
noisy, multi-source channels are under development.

References

[1] Y. Li and Z. Ding, “Global convergence of frac-
tionally spaced Godard (CMA) adaptive equalizers,”
IEEE Trans. Sig. Proc., vol. 44, pp. 818–826, April
1996.

[2] D. N. Godard, “Self-recovering equalization and car-
rier tracking in two-dimensional data communica-
tion systems,” IEEE Trans. Communications, vol.
28, pp. 1867–1875, November 1980.

[3] J. R. Treichler and B. G. Agee, “A new approach to
multipath correction of constant modulus signals,”
IEEE Trans. Acoustics, Speech, and Signal Process-
ing, vol. 31, pp. 459–472, April 1983.

[4] O. Shalvi and E. Weinstein, “New criteria for blind
deconvolution of nonminimum phase systems (chan-
nels),” IEEE Trans. Information Theory, vol. 36, pp.
312–321, March 1990.

[5] O. Shalvi and E. Weinstein, “Super-exponential
methods for blind deconvolution,” IEEE Trans. In-
formation Theory, vol. 39, pp. 504–519, March 1993.

[6] Z. Ding, “On convergence analysis of fractionally s-
paced adaptive blind equalizers,” IEEE Trans. Sig-
nal Processing, vol. 45, pp. 650–657, March 1997.

[7] D. Donoho, “On minimum entropy deconvolution,”
in: Applied Time Series Analysis II, D. F. Findley,
ed., Academic, New York, 1981.

[8] P. A. Regalia and M. Mboup, “Undermodeled equal-
ization: A characterization of stationary points for
a family of blind criteria,” submitted to the IEEE
Trans. Signal Processing, January 1998.


