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ABSTRACT

We approach the problem of restoring distorted autoregres-
sive (AR) signals by using a cascade model, in which the
observed signal is modelled as the output of a nonlinear AR
process (NAR) excited by the linear AR signal we are at-
tempting to recover.

The Volterra expansion of the NAR model has a very large
number of possible terms even when truncated at fairly small
maximum orders and lags. We address the problem of subset
selection and uncertainty in the nonlinear stage and model
length uncertainty in the linear stage through a hierarchi-
cal Bayesian approach, using reversible jump Markov chain
Monte Carlo (MCMC) and Gibbs sampling.

We demonstrate the method using synthetic AR data, and
extend the approach to process a long distorted audio time
series, for which the source model cannot be considered to
be stationary.

1. INTRODUCTION

Autoregressive processes can be used to model a variety of
signals, including audio. We consider the problem of recon-
structing such a signal from a nonlinearly distorted version
of it, when neither the form of the nonlinearity nor the max-
imum lag of the AR process are known.

The Volterra expansion [1] is a generalisation of the Tay-
lor polynomial expansion into the time domain, and can ap-
proximate a wide variety of nonlinearities. We use it in a
NAR model [2] to model the distortion process.

In making a Volterra expansion to the order and lag nec-
essary to model adequately a given nonlinearity, there can
be a very large number of possible terms. Incorporating all
of these terms would lead to severe over�tting. Hence there
is a need to select a subset.

The previous approach to this problem [3] assumed knowl-
edge of the maximum lag of the AR process, and used a
coarse grid search to reduce the number of candidate non-
linear terms �rst arbitrarily, then using the Akaike informa-
tion criterion [4], followed a stepwise regression procedure to
select a subset.

We present a fully Bayesian approach, evaluated using
MCMC methods [5], which has the advantage, in the case of
model uncertainty, that model mixing can be used, in which
the reconstruction is based on all the models, according to
their probabilities, rather than just the single most probable
one.
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2. MODEL FRAMEWORK

We use a cascade model [3] consisting of an AR source model
driving a NAR channel model:
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where fetg is a zero-mean i.i.d. Gaussian excitation se-
quence, fxtg is the original signal, fytg is the distorted signal

we observe, fa
(p)

i
g are the parameters of the AR process with

(unknown) maximum lag p, fbi;j ; bi;j;k; : : : g are the param-
eters of the NAR distortion process which is purely nonlin-
ear, i.e. it only has terms of order 2 and above, and �b is the
maximum lag of the NAR model.

To represent a subset of the nonlinear terms, we introduce
binary indicators, �, such that if �i;j = 1 then the term with
parameter bi;j is included in the model. Note that, for sim-
plicity, we have concatenated the di�erent order nonlinear
parameters into a single vector:

b =
�
b1;1 b2;1 � � � b�b;�b;�b;����b

�
T

We can extend this matrix-vector form to express equa-
tion (1) as:

e = Ax = x1 �X
(p)
a
(p)

x = y1 �Y(b � �) (2)

where � denotes the Hadamard (elementwise) product, x1
omits the �rst k terms of x, y1 omits the �rst �b terms of y,
A and X are matrices containing elements from a(p) and x,
respectively [6], and Y is a block diagonal matrix containing
products of elements from y.



2.1. Likelihoods

The output of the AR section, x, is coloured zero-mean
Gaussian noise which is completely described by:

x � N(x j 0;Cx) where C
�1
x =

ATA

�2e

where �2e is the variance of e. The approximate likelihood
for y can hence also be expressed as a multivariate Gaussian:
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where y0 is the �rst �b elements of y and Y� and b� are
partitioned such that Y�b� = Y(b � �).

Similarly, the approximate likelihood for x is:
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2.2. Priors

We choose simple Bernoulli and bounded uniform priors for
the NAR indicators and AR model length:
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and conjugate priors for the model parameters and hyper-
parameters:
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where bfmg are the m-th order NAR parameters. This par-
titioning is required because we expect a priori the values
of the NAR parameters of di�erent orders to be of di�er-
ent magnitudes. We use sfmg = E(jymt j) to scale the NAR
parameter values to be comparable.

2.3. Bayesian hierarchy

We wish to reconstruct the signal, x. Doing this using equa-
tion (2) requires knowledge of b and �, the posterior for
which is:
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This, however, is dependent on a(p) and k, which are also
unknown, and have posterior:
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which is dependent on x.

3. MARKOV CHAIN MONTE CARLO

Since we cannot evaluate the required marginal distributions
analytically, we take the MCMC approach [5], in which we
generate samples from the joint posterior of all the parame-
ters, from which we can then make Monte Carlo estimates.
We cannot sample from the joint distribution directly, but
we can use Gibbs sampling [7] or the Metropolis-Hastings
algorithm [8] in order to sample only from conditional dis-
tributions of subsets of the parameters, and yet generate a
Markov chain which converges in the limit to the correct
joint distribution.

3.1. Gibbs moves for subset model

In plain Gibbs sampling, each parameter is sampled from
its full conditional. Where there is strong interdependence
between parameters, such as between bi and �i, convergence
will tend to be slow [9]. We hence exploit the analytic struc-
ture of the model to marginalise bi, to allow us to sample
bi and �i jointly, and we further speed convergence by sam-
pling parameters and indicators for small random groups of
terms jointly [10]:
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where the subscript (�)u denotes the partition containing the
element(s) we are sampling, and (�)k is the remainder. Note
that equation (3) is a discrete distribution, and independent
of bu. These distributions are:
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where Yc is those columns of Y which correspond to 1s in
�
c
, the value of �

u
for which the distributions are being

evaluated, and nc is the number of 1s in �c
.

3.2. Reversible jump moves for AR model length

The parameter vector a(p) is of unknown dimension, as the
value of p is unknown. We hence use reversible jump MCMC
[11], a generalisation of the Metropolis-Hastings algorithm
which allows jumps between parameter spaces of di�erent
dimensionality.

Since the full conditional for the parameter vector a(p)

is available analytically, we can use it to propose e�cient
model moves. We can also marginalise the parameter values
from the acceptance probability to make it easy to compute



[12]. For a jump from AR length p to length p0, the accep-
tance probability is:

A
�
p! p

0�

= min

�
1;

��p
0

a

�
�p

a

��C
sa(p

0)

��12��C
sa(p)

�� 12
J(p0 ! p)

J(p! p0)

exp
�
1
2
�T

sa(p
0)C

�1

sa(p
0)
�
sa(p

0)

�
exp

�
1
2
�T

sa(p)
C�1

sa(p)
�
sa(p)

� �

where J(p ! p0) is the probability of choosing to propose
a move between these model lengths, for which we choose a
discretised Laplacian distribution, and other terms are de-
�ned in a similar manner to equation (4).

3.3. Gibbs moves for other parameters

The remaining parameters and hyperparameters, �2a , �
2
b and

�2e can all be sampled in Gibbs moves from their full condi-
tionals, which are Inverse Gamma distributions.
It also speeds convergence to sample occasionally the com-

plete parameter vectors b� and a(p), whose full conditionals
are multivariate Gaussians, so Gibbs moves can again be
used.

3.4. Sampling strategy

C�1
x and x are relatively expensive to compute, so we sep-

arate our sampling moves into those which a�ect C�1
x and

those which a�ect x. We can then reduce computation by,
within each iteration, making multiple moves from one of
these groups before recomputing the a�ected variable and
starting on the other group.

4. SYNTHETIC DATA

8000 samples were generated from a synthetic AR-NAR pro-
cess with 6 AR lags and 6 nonlinear terms:

b2;2 = �0:20 b4;1 = 0:18 b5;4;1 = �0:16

b5;5;3 = 0:16 b5;5;5 = 0:20 b2;2;2;1 = �0:10

Figure 1 shows the result of running the sampler for 2000
iterations with 82 candidate nonlinear terms (second and
third order to lag 6 and fourth order to lag 2). Indica-
tors were sampled in random triples, and 8 reversible jump
moves were proposed each iteration. It was initialised with
an empty model and arbitrary values for �2e , �

2
a and �2b .

It can be seen that the sampler converged very quickly
to the correct number of AR lags. The 6 terms which ap-
pear most frequently in the sampler output are the correct
nonlinear terms; that subset accounts for over 50% of the
iterations after a `burn-in' of 1000 iterations.
Figure 2 shows Monte Carlo estimates of posterior dis-

tributions of parameter values, produced from those post-
burn-in iterations which selected the most popular model.
It can be seen that the estimated distributions have signi�-
cant mass close to the known true values. The scatter plot in
�gure 3 shows that the AR parameters were also accurately
estimated.

5. LONG SIGNALS

A possible application of this method is the restoration of
distorted audio signals. AR models are widely used in pro-
cessing audio; a conventional approach is to break the audio
signal into blocks which are su�ciently small, i.e. fractions
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Figure 1: Identifying synthetic AR-NAR data (from top):
Raw � values | black areas represent 1s; Frequency of ap-
pearance of each NARmodel term; Frequency of appearance
of the most popular NAR subsets; Raw p values; Frequency
of appearance of each p value.

−0.21 −0.20

F
re

qu
en

cy

b
2,2

0.16 0.18 0.20

F
re

qu
en

cy

b
4,1

−0.16 −0.15 −0.14

F
re

qu
en

cy

b
5,4,1

0.16 0.18

F
re

qu
en

cy

b
5,5,3

0.20 0.21

F
re

qu
en

cy

b
5,5,5

−0.12 −0.11 −0.09

F
re

qu
en

cy

b
2,2,2,1

2.40 2.50 2.60

F
re

qu
en

cy

σ
e
2 × 10−3

Figure 2: Identifying synthetic AR-NAR data: Histograms
of �2e and NAR parameter values (true values marked by
lines).

of a second, that an assumption of stationarity is reasonable,
and process each block independently.

With many distortion problems, however, we can expect
the distortion process to remain unchanged over a much
longer period, perhaps minutes. This can be exploited by
estimating b and � over many (not necessarily contiguous)
blocks of audio, y[i]; i 2 f1 : : : Ig, the source model for each
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Figure 3: Identifying synthetic AR-NAR data: Sampled pole
positions (true values marked by white crosses).

D
is

to
rt

ed
R

es
to

re
d 

us
in

g 
 b

50 100 150 200 250 300 350 400 450 500
Sample number

R
es

to
re

d 
us

in
g 

 x

Figure 4: Restoring NAR distorted audio: Part of original
signal (dotted) with (solid, from top): Distorted signal y;
Restoration using estimates of b and �; Restoration by di-
rect Monte Carlo estimate of x.

of which has separate parameters a
(p)

[i]
, p[i] and �2e [i]. This

leads to A having a block Toeplitz form, which can be ex-
ploited to speed the evaluation of C�1

x . The computation
required increases only linearly with the number of blocks.

6. AUDIO DATA

70 000 samples from a 44.1kHz sampled pop music record-
ing were arti�cially distorted by an NAR process contain-
ing third, �fth and sixth order terms. 10 randomly-chosen
blocks of between 700 and 1000 samples from the signal were
used for analysis. The sampler was run for 300 iterations.

Figure 4 shows part of the original and distorted wave-
forms, together with two attempts at correcting the distor-
tion. The �rst uses a nonlinear moving average (NMA) �lter,
which is the inverse of the NAR process, with parameters b

found by Monte Carlo estimation from the sampler's out-
put for the most frequently appearing value of �, having
discarded the �rst 100 iterations as `burn-in'. The second
exploits model mixing by making a Monte Carlo estimate of
x directly. It can be seen that, while the distorted version
di�ers markedly from the original, both restorations match
the original signal closely.

7. DISCUSSION

The MCMC method presented here jointly estimates the
structure and parameters of a cascade AR-NAR model,
and allows for model mixing. Based on our previous work
[10, 12], we have exploited the partially analytic structure of
both parts of the model to make joint moves, and e�cient
proposals, to speed the convergence of the Markov chain.
Future work will include the application of this method

to the restoration of physically distorted audio. It is an-
ticipated that the e�ects of bandlimiting by the recording
media may need to be incorporated into the model [13].
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