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ABSTRACT

Tree-structured dictionaries of orthonormal bases
(wavelet packet/Malvar's wavelets) provide a natural
framework to answer the problem of �nding a \best
representation" of both deterministic and stochastic
signals. In this paper, we reformulate the \best ba-
sis" search as a model selection problem and present a
Bayesian approach where the decomposition operators
themselves are considered as model parameters. Denois-
ing applications are subsequently presented to substan-
tiate the proposed methodology.

1 Introduction

Basing multiscale representations of signals embedded in
noise on statistical approaches has recently been of great
research interest [4, 2, 6]. The optimization of represen-
tation typically takes place over a tree-structured dic-
tionary of orthonormal bases (wavelet packet/Malvar's
wavelets), and aims at statistically distinguishing the
signal components from those of the noise. These clas-
sical dictionaries, in turn, may be extended to more
general decomposition trees by considering node-varying
decomposition operators.

In this paper, we de�ne the \best basis" search in
these generalized dictionaries in a fully Bayesian per-
spective by considering the dictionary itself, and subse-
quently the optimal representation, as model stochastic
parameters. Since a complete statistical description of
the \best basis" is provided in this context by its pos-
terior distribution, the objective is not necessarily to
derive an estimate based on the decomposition onto the
\best basis". As a consequence, this framework is par-
ticularly useful to obtain a posteriorimean estimates ob-
tained by averaging signal estimates on distinctive bases.
In the sequel, we introduce nonstationary decomposition
trees in reference to the so-called nonstationary wavelet
packets and present a Bayesian model for signal repre-
sentation in denoising applications. We then propose
a reversible jump Markov chain Monte Carlo (MCMC)
sampler [3] to deal with the variable-dimension problem
induced by the chosen non-homogeneous priors on the
signal transformations.

2 Nonstationary decomposition trees

Let RK, with K = 2p; p 2 N�, denote the space of real
discrete-time signals of length K. Discrete decomposi-
tions on the interval are used throughout the paper. We
de�ne the dictionary D of possible representations with
the help of a �nite set of decomposition operator pairs
S =

�
(F ;G)1; : : : ; (F ;G)N

	
through the relations

B0;0 = [
K
k=1

�
�[n� k]

	
n=1;::: ;K

;

Bj+1;2m = F
�
j;mFj;mBj;m;

Bj+1;2m+1 = G
�
j;mGj;mBj;m;

subject to

SpanfBj;mg = SpanfBj+1;2mg
?

� SpanfBj+1;2m+1g;

for all (Fj;m;Gj;m) 2 S. We recall that (F�
j;m;G

�
j;m)

corresponds to the recomposition adjoint operator pair
while Bj;m denotes the orthonormal basis correspond-
ing to the node (j;m) (with j 2 f0; : : : ; Jg and m 2

f0; : : : ; 2j � 1g) of the dictionary. In other words, these
decomposition operators realize the following partition
of identity

F
�
j;mFj;m + G

�
j;mGj;m = I:

An orthonormal basis of RK is subsequently obtained
according to BI = [(j;m)=Ij;m�IBj;m where I is a par-

tition of [0; 1[ in intervals Ij;m = [2�jm; 2�j(m + 1)[,
similarly to the wavelet packet case [10]. We point
out that this general framework encompasses Malvar's
wavelets, possibly nonstationary wavelet packets [1],
and (by straightforward extensions) M -band wavelet
packets [8]. We now state the problem under study.
We assume the following model for the observation of a
random process realization

y(t) = x(t) +w(t); t 2 f1; : : : ;Kg;

where w(t) is i.i.d. normal, with zero mean and �nite
variance �2, although more general noise models may be
adopted in some cases [5]. Recovery of the underlying
unknown signal x(t) is of interest. Given a risk to be



minimized (typically the mean square error), the ideal
estimation would require an oracle for the optimal de-
composition basis B� which is completely characterized
by the corresponding sequence of optimal decomposi-
tion operators. This oracle is of particular interest for
practical applications such as underwater acoustic sig-
nal processing where a wide variety of phenomena are
encountered, implying that B� is not a priori known.
Then, in a Bayesian framework, the oracle for B� is pro-
vided by the posterior distribution p(B� j y) which, in
turn, is used to nonlinearly estimate the underlying sig-
nal of interest. In the sequel, we take advantage of the
binary tree structure of the decompositions to propose a
Bayesian approach to the involved integration problem
based on stochastic algorithms.

3 Bayesian framework

Let xB
�

denote the K-dimensional vector of time sam-
ples of the underlying process x(t) in B

�. Following
[6, 5], we choose non-homogeneous Bernoulli-Gaussian
priors to reect the desired parsimonious representation
of the process xB

�

. Using the orthonormality property
of the decompositions, we subsequently obtain

p(y j B�j;m; �
�

j;m; �
2) =

K2�jY
k=1

h
(1�"j;m)g(y

B
�

j;m [k] j �2)+

"j;mg(y
B
�

j;m [k] j ~�2j;m)
i
; (1)

where g(� j s2) denotes the Gaussian N (0; s2) PDF and
�
�

j;m = ["j;m; ~�
2
j;m], with ~�2j;m � �2. In other words,

the noise statistical properties remain unchanged in any
basis of the dictionary. This mixture model is used in
tandem with an allocation hidden vector q� of indepen-
dent random variables de�ning the following conditional
densities

p(yB
�

j;m [k] j q�j;m[k] = 0) = g(yB
�

j;m [k] j �2)

p(y
B
�

j;m [k] j q�j;m[k] = 1) = g(yB
�

j;m [k] j ~�2j;m);

with P (q�j;m[k] = 1) = "j;m 2 [0; 1]. We recall that

the set of model parameters (including here B
�) are

distributed in a Bayesian framework according to prior
probabilities providing the posterior distribution of in-
terest

p(B�; ��; q� j y) / p
�
yB

�

j B
�; ��; q�

�
p
�
�
�; q� j B�

�
p(B�);

where �� = [�2;[(j;m)=Bj;m�B��
�

j;m]. Note that our
state of knowledge concerning the functional/statistical
nature of the signal under study is now expressed by
the likelihood function (1) and priors p

�
�
�; q� j B�

�
and

p(B�). In particular, this latter distribution expresses
our degree of belief (or ignorance) concerning the opti-
mal dictionary and the associated decomposition bases.

We further assume that the parameter vector prior reads

p
�
�
�; q� j B�

�
= p(�2 j B�)Y

(j;m)=Bj;m�B�

P (q�j;m j "j;m)p(~�
2
j;m j �2);

to provide an independent local modeling of yB
�

. In
order to minimize the mean square error, we propose
to estimate the signal x using the posterior expectation
E[x j y] which is expressed as

E[x j y] = EB� ;��;q�

h
E[x j B

�; ��; q�;y]
i
; (2)

with

E[xB
�

j;m [k] j ��j;m; �
2; q�j;m;y

B
�

j;m ] =

~�2j;m � �2

~�2j;m
q�j;m[k]y

B
�

j;m [k];

for the involved model (1). The evaluation of (2) be-
ing analytically intractable, we resort to reversible jump
MCMC methods to answer the problem of dimension
changing of the parameter space induced by the non-
homogeneous likelihood.

4 Reversible jump MCMC sampler

We recall that MCMC algorithms allow the construc-
tion of ergodic Markov chains whose equilibrium distri-
bution corresponds to a target posterior density (given
by p(B�; ��; q� j y) in our problem) upon which any
Bayesian inference is based. In particular, the posterior
expectation (2) may be approximated for N � 1 by

E[x j y] �
1

N � n0

N�1X
n=n0

E[x j B
�(n); ��(n); q�(n);y];

where n0 < N denotes the burn-in period of the
chain, under mild conditions (namely aperiodicity
and irreducibility) on the generated Markov chainn�
B
�(n); ��(n); q�(n)

�
;n = 0; : : : ; N � 1

o
. Possible

moves of the chain are de�ned through the following
randomly scanned tansition kernels
(a) a change in the decomposition operators (Fj;m;Gj;m)
at a randomly chosen node (j;m),
(b) a change in the parameter vector [��j;m; �

2] and allo-
cation variables q�j;m where (j;m) is a terminal node,
(c) a new decomposition, i.e. the addition of two termi-
nal nodes,
(d) a recomposition, i.e. the deletion of two terminal
nodes.
Those transition kernels satisfy the desired (weak) con-
vergence conditions. Note that the last two transitions
induce a change in the parameter subspace dimensional-
ity and make it compelling to resort to reversible jump
samplers. The principle consists of de�ning here a move
from �j;m to (�j+1;2m; �j+1;2m+1) with the help of a



reversible deterministic function fj;j+1(�) along with a
random vector u 2 R2 (�j;m 2 [0; 1]�R+) verifying

(�j+1;2m; �j+1;2m+1) = fj;j+1(�j;m;u):

The random vector u completes the parameter space at
resolution level j in order to de�ne a common dominat-
ing measure. We choose to generate a two-dimensional
random vector of independent beta Be(3; 3) variables to
obtain the new parameters according to

"j+1;2m = 2u1"j;m;

"j+1;2m+1 = 2(1� u1)"j;m;

"j+1;2m~�
2
j+1;2m = 2u2"j;m~�2j;m;

"j+1;2m+1~�
2
j+1;2m+1 = 2(1� u2)"j;m~�2j;m;

subject to the model constraints ("j+1;2m; "j+1;2m+1) 2
[0; 1]2, ~�2j+1;2m � �2 and ~�2j+1;2m+1 � �2. Note that this
setting results in the following reconstruction equations
(i.e. the inverse transformation f�1j;j+1(�) associated with
the recomposition move (d))

"j;m =
"j+1;2m + "j+1;2m+1

2
;

"j;m~�2j;m =
"j+1;2m~�2j+1;2m + "j+1;2m+1~�

2
j+1;2m+1

2
;

which amounts to the conservation of energy for the
signal component in the mixture. The Jacobian of the
transformation is then given by

J =
8"j;m~�2j;m

u1(1� u1)
:

Similarly to the classical (i.e. without dimension chang-
ing) Metropolis-Hastings (M-H) algorithms, the param-
eter vector proposal (�j+1;2m; �j+1;2m+1) in the decom-
position move is then only accepted with probability
�j;j+1 given (using simpli�ed expressions) by

�j;j+1 = min

8<
:1;

p(s0 j y)P (qj;m)

p(s j y)P
�
(qj+1;2m; qj+1;2m+1)

�
pj+1;jJ

pU (u)pj;j+1

�
:

In the previous expression, the symbol s =�
Bj;m; �j;m; qj;m

�
stands for the current state, while

s0 =
�
(Bj+1;2m;Bj+1;2m+1); (�j+1;2m; �j+1;2m+1);

(qj+1;2m; qj+1;2m+1))
�
corresponds to the proposal, and

pj;j+1 denotes the prior probability of the decomposition
move which depends on the current representation ba-
sis. The proposal for (qj+1;2m; qj+1;2m+1) is obtained
using the full conditional distribution given the pro-
posed parameter vector (�j+1;2m; �j+1;2m+1). Conse-
quently, the chain remains in its previous state with
probability 1 � �j;j+1, which in particular guarantees

the desired aperiodicity condition. Note that our choice
for moves (c) and (d), involving two consecutive de-
composition levels, corresponds to the simplest basis
update, and more general transitions may be alter-
natively/additionally proposed to move more rapidly
across the tree. The parameter vector update (move (b))
is implemented using conjugate beta and inverse gamma
priors for "j;m and (~�2j;m; �

2) respectively, through the
classical Data Augmentation algorithm [9, 7]

�2(n+1) � p(�2 j q�(n);yB
�

);

�
�(n+1)
j;m � p(��j;m j �2(n+1); q

�(n)
j;m ;yB

�

j;m);

q
�(n+1)
j;m � P (q�j;m j �

�(n+1)
j;m ; �2(n+1);yB

�

j;m):

We �nally choose to implement an M-H step for move
(a) by �rst selecting a node (j;m) at random in the cur-
rent decomposition tree, and then drawing a proposal
(Fj;m;Gj;m) from the prior distribution on the operator
set S. Without additional information, this distribution
is considered as uniform. This operator pair provides in
turn a new decomposition basis and is likely to mod-
ify the representation at children nodes (j0;m0), with
j0 > j such that Bj0;m0 belongs to the current basis. We
therefore simultaneously update the associated param-
eter vector �j0;m0 with proposals drawn from their prior
distribution, while qj0;m0 is again obtained using the full
conditional distribution given the proposed parameters.

5 Simulations

To show the interest of the proposed method, we present
the results obtained with two examples of underwater
acoustic signals given in Fig. 1. The �rst process corre-
sponds to a biological signal involving transient phenom-
ena while the second one is arti�cial and corresponds
to a modulated waveform. In both cases, the noise
level results in a Signal-to-Noise Ratio of 0 dB. The set
of decomposition operators is composed of three uni-
tary transforms given by a single level wavelet packet
decomposition, a time segmentation and a discrete co-
sine transform, providing enough structure to reproduce
both wavelet packet (WP) and Malvar's wavelet (MW)
decompositions. The maximum level of decomposition
was �xed to J = 5 and the parameter informative priors
are given by "j;m � Be(1; 3), ~�2j;m � IG(1; 1=2b�2

yB
) and

�2 � IG(3; 1=4b�2
yB
) subject to ~�2j;m � �2. The prior

distribution on "j;m expresses the desired parsimonious
character of signal representations, while the mode of
the variance priors corresponds to a robust estimate of
the variance of y in the current decomposition basis de-
noted by b�2

yB
. Indeed this estimate is close to �2 when

the decomposition onto the basis B leads to a parsimo-
nious representation of the signal of interest. Our ap-
proach is then compared in terms of normalized mean
square error (NMSE = jjbx�xjj22=jjxjj

2
2) to the two cor-

responding best basis selection algorithms introduced in
[6] using the same model (1). Note that, in this latter



work, a maximum likelihood/generalized likelihood ap-
proach was used to determine the \best basis". This
approach was shown to provide improved performances
with respect to classical thresholding policies.
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Figure 1: (a) biological signal, (b) arti�cial signal, (c)
and (d) noisy versions of (a) and (b) respectively.
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Figure 2: (a) and (c) biological signal estimates using
WP (NMSE = 0:35) and Posterior Expectation (NMSE
= 0:29) respectively, (b) and (d) arti�cial signal esti-
mates using MW (NMSE = 4:6 10�2) and Posterior
Expectation (NMSE = 3:5 10�2) respectively.

For illustration, the results obtained with the proposed
algorithm are presented in Fig. 2 along with the esti-
mates derived in the best (�xed) dictionary using the
approach developed in [6]. As expected, our approach
demonstrates its adaptation properties to the unknown

signal of interest.

6 Conclusion

In this paper, a fully Bayesian approach to \best ba-
sis" representation of noisy signals over tree-structured
dictionaries of bases has been presented. This approach
makes use of non-homogeneous statistical models, and
hinges upon the construction of a Markov chain whose
stationary distribution corresponds to the posterior dis-
tribution of interest. This Markov chain, in turn, is
used to nonlinearly estimate the underlying signal via
posterior expectation.
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