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ABSTRACT

Most of the problems arising in geophysics consist in

recovering some characteristics of the earth (re
ectivity,

resistivity, : : : ), from some measurements usually made

at the top of the earth (seismic data, electromagnetic

data, : : : ). The observations can be seen as the output

data of a noisy (linear or non linear) system, that can

be known, or unknown. When the system is unknown,

it can be estimated, together with the noise variance, by

using a stochastic version of EM algorithm.

When the system is identi�ed, some adaptations of

MCMC techniques allow one to estimate the a posteri-

ori distribution of the input sequence, according to the

prior distribution. This prior can take into account the

regularity of the input sequence, as well as the presence

of abrupt changes in this sequence.

1 Introduction

In many physical systems, two kinds of data are present:

a vector y = (yi; 1 � i � m) of observed data, and a

vector z = (zi; 1 � i � n) of unobserved data. We

consider here that this physical system can be modeled

by using a parametric model of the form

y = H(z; �) + " (1)

where " is an additive random noise, and where � is a

parameter that takes its values in a given subset � of

IRd.

The identi�cation of the model consists in estimat-

ing the parameter �, while the recovery of the unknown

input signal consists in estimating the sequence z.

The EM algorithm is an iterative and deterministic

method for computing the maximum likelihood esti-

mate of �. The EM algorithm maximizes the observed

likelihood g(y; �) by iteratively maximizing conditional

expectations of the complete log-likelihood l(y; z; �).

Then, an appealing property of EM is its numerical sta-

bility: each iteration increases the complete data like-

lihood and the convergence is almost always to a local

maximum. Unfortunately, the conditional expectation

of l(y; z; �) cannot be computed in closed-form in most

of interesting models.

Then, SAEM (for Stochastic Approximation of EM)

algorithm proposed by Lavielle et al. [10] uses a stochas-
tic approximation procedure in order to estimate the

conditional expectation of the complete log-likelihood.

The k'th step of SAEM may thus be summarized as

follows:

� Simulation : generate a realisation zk of the miss-

ing data vector under k(zjy; �k), the a posteriori

density of the complete data given the observations

and the current �t �k of the parameter vector.

� Stochastic approximation : compute the current ap-

proximationQk(�) of the conditional expectation of

the log-likelihood l(y; z; �) according to

Qk(�) = Qk�1(�) + 
k(l(y; zk; �)�Qk�1(�)) (2)

where (
k) is a sequence of positive stepsizes.

� Maximization: maximize Qk(�) in the feasible set

�, i.e. �nd �k+1 2 � such that:

Qk(�k+1) � Qk(�) 8� 2 �:

The stepsize allows the tuning of the stochastic exci-

tation fed into the algorithm, avoiding the convergence

towards spurious stationary points (e.g. saddle points or

local minima). Indeed, under some general hypothesis,

SAEM algorithm converges towards a local maximumof

the observed likelihood.

When the parameter � has been estimated, di�erent

estimators of the input sequence z can be proposed. The

MAP (Maximum a Posteriori) maximizes the joint a
posteriori distribution k(zjy; �). The MPM (Maximum

Posterior Mode) maximizes the marginal distributions

k(zijy; �), for 1 � i � n. Another Bayesian estimate of

zi is the mean of k(zijy; �), instead of its mode. When

the joint distribution k(zjy; �), or its local characteris-
tics k(zijy; �), cannot be computed in closed-form, they

are estimated by using a MCMC method.



2 Seismic deconvolution

In seismic deconvolution, the observed data is a set of

seismic traces and the non observed data series z is the

sequence of re
ection coe�cients of the earth. In a �rst

approximation, a seismic trace is the convolution of the

re
ectivity sequence with a wavelet a sent from the top

of the earth. A random measurement noise " is also

present:

yt =

LX
l=0

a(l)zt�l + �"t: (3)

We assume that the input re
ectivity sequence is an

independent and identically distributed sequence of ran-

dom variables distributed according to a mixture of two

zero-mean Gaussian distributions with di�erent vari-

ances:

zi � �N (0; �21) + (1� �)N (0; �22) (4)

This model is standard in deconvolution of seismic traces

(see [8, 11]). Indeed, the main re
ectors, which indi-

cate separation between the layers have a variance big-

ger than the secondary re
ectors, which indicate small

variations inside layers.

Assuming that " is a Gaussian white noise with unit

variance, the parameters to be estimated are the �lter

a = (a(0); : : : ; a(L))t, the variance of the additive noise

�2, and the prior distribution � of z, that is (�; �21; �
2
2).

Here, some maxima of the likelihood are made up of

�lters having di�erent phases and SAEM can converge

towards a local maximum, that is, a �lter with a wrong

phase. A simulated annealing procedure improve con-

vergence towards a global maximum of g. Then, we can

hope to recover the correct phase if the number of data

is large enough.

A synthetic example is shown Figure 1. In this ex-

ample, the prior distribution � is assumed to be known.

The original �lter and the initialization are displayed in

Figure 1{a (the initialization is a spike at t = 5 while

the �lter is symmetric around t = 10). With this initial

guess, SAEM converges to a wrong solution, that is a

local maximum of the likelihood (Figure 1{b). On the

other hand, the simulated annealing version of SAEM

allows a correct recovery of the system phase (Figure 1{

c). It is interesting to remark that these two estimated

�lters essentially di�er from their phase (Figure 1{d).

See [9] for a complete description of this procedure.

The Simulation step of SAEM is performed by using

a MCMC algorithm. Indeed, several sampling schemes

can be used for generating the input signals with the a

posteriori distribution, when the prior distribution is a

Gaussian mixture [1, 2, 5, 6].
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Figure 1: (a) The coe�cients (a(l)) of the original �lter
of length L = 20 and the initialization (a spike at t =
5), (b) estimation obtained with SAEM, (c) estimation
obtained with the simulated annealing version of SAEM,
(d) comparison of the modulus of the transfer functions
of the �lters displayed in (b) (dashed line) and (c) (solid
line).

3 Electromagnetic imaging

The electromagnetic inverse problem consists in estimat-

ing the distribution of rock resistivity from electromag-

netic measurements on the surface of the earth. We

consider the example of magnetotelluric soundings lim-

ited to the 1-D approximation. In this case, the elec-

trical resistivity will only vary with the depth, there-

fore, the 1-D model could be described as a digitized

medium of n homogeneous thin layers whose thickness

increases with depth [7]. The missing data is the vec-

tor z = (zi; 1 � i � n) of resistivity of the lay-

ers. The observed magnetotelluric data set is a vector

y = (yj ; 1 � j � m), corresponding to di�erent fre-

quencies (f1; : : : ; fm):

yj = H(z;�j)(1 + �"j): (5)

In this example of application, the forward problem is

solved, i.e., the function H in (5) is known. Further-

more, the variance of yj depends on the frequency �j .

In the framework of the 1-D electromagnetic inverse

problem, the known physical properties of geological en-

vironment and results from other earth sciences enable

us to deduce the maximum and minimumvalues of pos-

sible resistivities on each layer. Then, a discretization

of this set of values reduces to L the number of di�er-

ent possible values for the resistivity. In other words, zi
takes its value in a known �nite set E = f�1; : : : ; �Lg.



3.1 The estimation of the noise variance

We consider �rst that z is a sequence of i.i.d. random

variables, uniformly distributed onE: P (zi = �`) = 1=L

for any 1 � ` � L and any 1 � i � n.

Since H is known, the identi�cation of the model re-

duces to the estimation of �2. In this example, it is easy

to see that the Stochastic Approximation step (2) and

the Maximization step of SAEM reduce to the following

recursion:

�2k+1 = �2k + 
k(S
2
k � �2k) (6)

where S2k is the empirical estimate of �2 computed with

y and with the simulated sequence zk:

S2k =
1

m

mX
j=1

����yj �H(zk;�j)

H(zk;�j)

����
2

: (7)

Thus, if we set, for example, 
k = 1=k, then �2k+1 is the

empirical mean of the sequence (S21 ; S
2
2 ; : : : ; S

2
k).

On the other hand, the SEM algorithm proposed by

Celeux and Diebolt [4], is obtained with 
k = 1. In this

case, �2k+1 = S2k.

We display in Figure 2 a comparison of the SEM al-

gorithm with the SAEM procedure, with 
k = 1=k. We

clearly see with this example that the decreasing se-

quence of stepsizes (
k) allows to reduce the random-

ness of the estimation, and to converge almost surely to

the maximum likelihood estimate of �2 (see the detail

of the two trajectories shown in Figure 2-b).
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Figure 2: Comparison of SEM and SAEM. ���� : the
trajectory (�2k) obtained with SEM (
k = 1), ��� : the
trajectory (�2k) obtained with SAEM (
k = 1=k).

3.2 The estimation of the resistivity sequence

We estimate in this section the a posteriori distribution
of the re
ectivity sequence. We shall not consider here

that the re
ectivity sequence is i.i.d. Indeed, the re
ec-

tivity is known to be a smooth function, with abrupt

changes at some unknown instants. Then, we introduce

a new vector q = (qi; 1 � i � n), with qi = 1 if there

is a change at i, and qi = 0 elsewhere. On the other

hand, the prior distribution � must favors minimal vari-

ation between the resistivity values of consecutive layers

beetween two abrupt changes. The prior distribution �

of (z; q) is then de�ned as follows:

i) The sequence q is i.i.d. with

P (qi = 1) = 1� P (qi = 0) = p :

Here, p is the prior probability to have a change at any

instant i.

ii) Assume that qi1�1 = qi2 = 1 and qi = 0 for any

i1 � i < i2. Then,

�(zi1 ; : : : ; zi2) = C��(zi1)

i2Y
i=i1+1

exp

(
��

�
log

zi

zi�1

�2)
:

The constant C� is a normalizing factor, the parameter

� controls the smoothness of the re
ectivity function,

and the initial law � is choosen such that the marginal

distributions function of the zi's are identical.

According to this prior distribution �, we can de�ne

the a posteriori distributions of qi and zi:

P (qi = 1jy) is the probability to have a change at

depth i, conditionnally to the observations y.

P (zi = �`jy) is the probability that the resistivity at

depth i is equal to �`, conditionnally to the observations

y.

These two a posteriori distributions can be estimated

for all 1 � i � n, by using the Gibbs Sampler, together

with a Rao-Blackwellisation scheme, in order to reduce

the variance of estimation [3].

A numerical experiment is proposed in Figure 3. In

this example, �2 = 0:05. We consider the problem of

the estimation of (q; z), obtained with the smoothing

parameter � = 20 and with p = 0:01. The true resistiv-

ity sequence is displayed in Figure 2-a together with the

estimation of (P (zi = �`jy); 1 � i � n; 1 � ` � L).

We display also in Figure 2-a the estimation of the

posterior means (E(zijy); 1 � i � n). This sequence

gives a very accurate estimation of the true re
ectivity

sequence.



The estimation of (P (qi = 1jy); 1 � i � n) is dis-

played in Figure 2-b. We can see that the mode of the

conditional distribution P (zi = �`jy) provides a very

good estimate of the resistivity zi. On the other hand,

the original changes at depth 1.5km, 1km, 3km and

3.5km are well detected.
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Figure 3: The a posteriori distribution of (qi; zi), esti-
mated by using the Gibbs Sampler procedure. We dis-
play the matrix (P (zi = �`jy); 1 � i � n; 1 � ` � L)

in Figure 3-a ; each value of this matrix is represented
with a gray level: a dark cell correspond to a high prob-
ability, while a white cell corresponds to a low prob-
ability. The true resistivity sequence is in solid line
and the posterior mean is in dotted line. The vector
(P (qi = 1jy); 1 � i � n) is displayed in Figure 3-b.
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