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ABSTRACT

We present an algorithm in which the Maximisation step

of the EM algorithm is replaced by a Sampling step. We

describe an application of the algorithm to noise reduc-

tion for an audio signal. The results of various simu-

lations on synthetic data are presented and compared

to the results obtained using the EM algorithm and the

Gibbs Sampler. A major limitation of the EM algorithm

is that it can converge on local stationary points. The

results we present show how our algorithm successfully

overcomes this limitation.

1 INTRODUCTION

The EM Algorithm proposed by Dempster et al. [5] pro-

vides an iterative procedure for Maximum a posteriori

estimation in the case of incomplete data. A major lim-

itation of the EM algorithm is that whilst convergence

to a stationary point of p(� j y) can be shown [12], this

is not necessarily the global maximum. Thus the choice

of initial conditions is vital to the convergence of the

algorithm [9, 15]. The motivation for implementing a

stochastic version of EM is to overcome this limitation.

Two stochastic EM algorithms of interest are the SEM

Algorithm [4, 9] and the MCEM Algorithm [12, 14].

In MCEM, the analytic calculation of the E-step is re-

placed by a Monte Carlo approximation. In SEM, the

Stochastic Imputation Principle is applied to simulate

the unobserved data based on the observed data and

the current value of the parameters [3]. Both of these

algorithms are e�ectively replacing the analytic E-step

with a stochastic step. The algorithm we propose seeks

to replace the M-step with a simulation step. The sim-

ulation step should help the algorithm converge to the

global maximum of the posterior independently of the

initial conditions. We note that for many models of in-

terest, including the model we discuss, it will be possible

to calculate the E-step analytically and that this result

can be used to give statistical stability. In particular we

suggest that the new stochastic version of the EM algo-

rithm can be embedded within a more complex MCMC

framework in order to give greater statistical e�ciency

than standard Gibbs or Metropolis-Hastings samplers.

In Section 2 we describe the EM Algorithm and then

propose a method of replacing the M-step with a sam-

pling step. Section 3 describes an application of the

proposed algorithm and in Section 4 we compare the

results obtained using our method with those obtained

using the EM Algorithm and Gibbs sampler. Finally in

Section 5 we give our conclusions and propose further

study using our algorithm.

2 THE ALGORITHM

The EM algorithm (Dempster et al. [5]) is an iterative

method for �nding the mode of the posterior. EM can,

of course, also be used to calculate maximum likelihood

estimates. Each iteration of the algorithm consists of an

Expectation step (E-step) and a Maximisation step (M-

step). Let �i be the current estimate of the parameter

vector, then the E-step consists of computing,

Q(�; �i) =

Z
<
N

log [p(� j y;x)] p(x j y; �i)dx (1)

This is the Expectation of log p (� j y;x), the log aug-

mented posterior, with respect to p
�
x j y; �i

�
, the con-

ditional predictive distribution of the latent unobserved

data x. In the M-step, Q
�
�; �

i
�
is maximised with re-

spect to � to give �i+1. This process is then iterated un-

til convergence. As stated previously, the EM algorithm

converges to a stationary point of p (� j y) and if the pos-
terior has multiple stationary points, the algorithm does

not necessarily converge to the global maximum.

In order to overcome this limitation, we propose the

following modi�cation to the EM Algorithm which we

call the Expectation-Sample (ES) algorithm. Instead of

choosing �i+1 to maximise Q
�
�; �

i
�
, we propose drawing

a sample � from q
�
� j �i

�
/ exp

�
Q
�
�; �

i
��
. In this way

the algorithm becomes,

E-Step

Q(�; �i) =

Z
<
N

log [p(� j y;x)] p(x j y; �i)dx (2)
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(d) Gibbs Sampler Estimated Signal

Figure 1: Results of using EM and ES Algorithms to estimate the data using the same initial conditions.

S-Step

q(� j �i) / exp
�
Q(�; �i)

�
(3)

Initially, we choose to assign �
i+1 = � and repeat the

algorithm until convergence. This scheme can be seen

as a variation of the Data Augmentation Algorithm of

Tanner and Wong [13]. It is not clear what the station-

ary distribution of this Markov chain is, but empirical

evidence suggests that the chain converges to a distri-

bution similar to the posterior.

In order to ensure convergence to the true posterior p(� j
y), a Metropolis-Hastings step can be used. In this case

the proposal density is q(� j �i) and the target density

is the true posterior p(� j y). Then given �
i and � �

q(� j �i) we accept �i+1 = � with probability,

�(�; �i) = min

 
1;

p (� j y) q
�
�
i j �

�
p (�i j y) q (� j �i)

!
(4)

This step then ensures that the stationary distribution

of the chain is p(� j y).
The algorithm we have described here is applicable to

conditionally Gaussian state-space models in which the

transition equations depend linearly upon the states.

Examples of this general class of models include Au-

toregressive models and the Autoregressive part of an

Autoregressive-Moving Average model. For descriptions

of such models see [2, 11].

In the next section we outline an application of the pro-

posed algorithm that demonstrates its robustness.

3 APPLICATION

The application we present is that of noise reduction

for a signal that can be modelled as an autoregressive

process [6, 7, 8, 10].

This system is described by the following equations,

y = x+ v (5)

x1 = Xa+ e (6)

where e = [ep+1; : : : ; eN ]
0 is the excitation vector, x =

[x1; : : : ; xN ]
0 is the data vector and p is the order of the

AR model. The vector x1 is x with the �rst p elements

removed, and a = [a1; : : : ; ap]
0 is the vector of the AR

coe�cients. The rows of X are constructed in such a way

as to form xt =
P

p

i=1
aixt�i+ et for successive samples,

xt.

If we de�ne the augmented data as s = [y0 x0]0 and

assume conjugate priors [1] for p(a), p(�2
e
) and p(�2

v
),

where � = [a0; �2
e
; �

2
v
]0 is the parameter vector, the E-

step is then,

Q(�; �i) /

Z
<
N

log [p(y j x; �)] p(x j y; �i)dx

+

Z
<
N

log [p(x j �)] p(x j y; �i)dx (7)

and the S-step is

�
2
v

i+1
� IG

�
�
2
v
j
N

2
� 1;

y0y � 2y0E[x] +E[x0x]

2

�
(8)

�
2
e

i+1
� IG

�
�
2
e
j
N

2
� 1;

E[x01x1]�E[x01X]aMAP

2

�
(9)

ai+1 � Np

�
a j aMAP; �

2
e

i+1
E[X0X]�1

�
(10)

where

aMAP = E[X0X]�1E[X0x1] (11)



The expectations in Equations (8)-(11) are implicitly

conditioned on the latent unobserved data x and the

current parameter estimate �i.

The algorithm is run to convergence (for our example

we obtain the number of iterations for convergence em-

pirically) and then we �nd the minimum mean square

error estimate of the parameters using Monte Carlo in-

tegration,

�̂ =
1

N �m

NX
i=m+1

�
i (12)

where m is the number of iterations required for conver-

gence (`burn-in') andN is the total number of iterations.

For our implementation of the algorithm, we have found

the use of the Metropolis step results in low acceptance

rates when the estimate is far from the mode thus for

this application we have not used a Metropolis step.

We suggest that to ensure convergence to the posterior

p(� j y), the algorithm can initially be run without a

Metropolis step and once converged the Metropolis step

can be used to draw samples from the posterior. Future

work will involve establishing an expression for the sta-

tionary distribution of the Markov chain described by

the algorithm.

4 RESULTS

We performed a number of simulations using the sys-

tem described in Section 3. We generated synthetic

data using a 2nd order autoregressive process to which

we added known white Gaussian noise. The reason for

this approach is to enable us to compare the estimated

parameters with the known parameter values. We can

also compare the ES estimate of the parameters with

the estimates obtained using the EM algorithm. An-

other interesting comparison for our algorithm is the

Gibbs Sampler (see [6, 7, 8] for MCMC work with these

models). Figure 1 shows the results of estimating the

unobserved data for each of the three algorithms us-

ing the same initial conditions for the parameters. The

results shown in Figure 1 indicate that our algorithm

produces a smoothed estimate of the data x, whilst the

EM algorithm and the Gibbs sampler have not made

any appreciable improvement of the noisy signal.

The results in Table 1 show our algorithm producing

better estimates of the parameters than either the EM

algorithm or Gibbs sampler for a particular set on ini-

tial conditions. The estimates of the parameters for the

ES algorithm and the Gibbs sampler were found using

Monte Carlo integration as described in Equation (12)

where N = 500 and m = 100. The EM estimates of the

parameters were the �nal estimates obtained by running

the EM algorithm for 500 iterations. Once the �nal es-

timate of the parameters has been found, we use this to

estimate the unobserved data x. In all the simulations

Real ES EM Gibbs

a1 1.8 1.77 0.66 0.72

a2 -0.81 -0.78 0.30 0.24

�
2
e

1� 10�3 0:8� 10�3 10:7� 10�3 11:2� 10�3

�
2
v

5� 10�3 5:2� 10�3 0:2� 10�3 0:7� 10�3

Table 1: Table showing the estimated parameter val-

ues compared with the real values for the ES, EM

and Gibbs algorithms given the the initial conditions

a0 = [�0:18;�0:09]0, �2
e

0
= 1�10�5 and �2

v

0
= 1�10�2.

0 50 100 150 200 250 300 350 400 450 500
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

(a) Noisy Music Signal
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(b) `Clean' ES Estimated Music Signal

Figure 2: Result of using the ES Algorithm for noise

reduction of a real music signal.

we performed our algorithm produced at least compa-

rable results to the results of the other algorithms, and

in a number of instances our algorithm performed bet-

ter than EM or Gibbs sampling. In particular, for each

simulation, our algorithm converged close to the true

values of the parameters, which was not the case for

EM or Gibbs sampling as illustrated by our example.

This leads us to believe that our algorithm successfully

negotiates local stationary points in the posterior den-

sity.

Figure 2 shows the results of using our algorithm for

noise reduction of a real music signal. The degraded

signal was obtained by adding known white noise to a

real music signal. The `burn-in' for the algorithm was

10 iterations which we determined by experiment and

we then used 20 iterations after convergence to obtain

an estimate of the parameter vector - we have found

that good results are obtained even for so few iterations.

Our results have shown our algorithm to be successful

in performing the task of noise reduction for this type

of signal.

For the particular application we have described, unless

strong prior information is available for �2
v
(see [6]) , the

Gibbs Sampler fails to give satisfactory results whereas



EM and particularly ES produce much better results.

We believe this is a result of the statistical stability

that is provided by the analytic calculation of the E-

step. This is what motivated us to consider a stochastic

scheme in which we made use of this stability, but at

the same time attempted to overcome the limitations of

deterministic EM.

5 CONCLUSION

The results presented in the previous section show that

our algorithm performs at least as well as the EM al-

gorithm and the Gibbs sampler for a particular exam-

ple. In some instances, our algorithm gives better results

than either EM or Gibbs sampling. We conclude that

the improvement over EM is a result of the stochastic

nature of our algorithm that allows it to negotiate local

stationary points of the posterior p(� j y). Empirical

evidence leads us to believe that our algorithm does, in

fact, converge on a density that is similar to the poste-

rior. Thus we conclude that our algorithm has success-

fully overcome the limitation that EM has of converging

to local stationary points.

The fact that our algorithm performs better in some in-

stances than the Gibbs sampler we believe is a result of

the analytic calculation of the E-step which reduces the

dimensionality of the sample space. The usefulness of

this result is that it enables us to make use of the sta-

tistical stability of EM for certain models of interest. In

particular we will extend these ideas to include the pro-

posed algorithm as just one step within a large MCMC

framework for parameter estimation. For example, the

model can then be elaborated to include outliers, non-

Gaussianity and non-stationarity, as in [6, 7, 8, 11].

Future work will involve the use of the algorithm pre-

sented here in larger MCMC frameworks. In particular,

we are currently investigating the use of the ES algo-

rithm for the source separation problem. Another as-

pect of future work will be to �nd the stationary distri-

bution of the Markov chain described by the algorithm.
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