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ABSTRACT

This paper presents some improvements of a rotation invari-
ant method based on AutoRegressive (AR) 2D Models to
classify textures. The basic model and our improved version
are applied to natural sidescan sonar images (with multi-
plicative noise) in order to extract a reduced set of relevant
rotation invariant features which are then used to feed a
MultiLayer Perceptron (MLP) for identi�cation task. The
basic method provides three AR parameters, estimated over
a 3�3 pixel neighbourhood. We propose an extension of
this method to a 5�5 pixel neighbourhood in order to take
spatial interactions into account more e�ciently. Three new
features are estimated. Some analyses are conducted over
these features to evaluate their interest. Classi�cation re-
sults on four types of sidescan sonar images illustrate the
e�ciency of the proposed approach.

1 INTRODUCTION

The classi�cation of sea
oor areas has two applications : the
cartography of sea
oors and the improvement of detec-
tion/classi�cation steps of manufactured objects lying on
these sea
oors. A sonar image is formed by two types of ar-
eas: shadow areas which are due to the lack of reverberation
and sea
oor areas which characterize the signal reverbera-
tion on the bottom.
The key step of a recognition system lies in the appropri-
ate feature calculation. Sonar images are highly textured
and very noisy. Good reviews on texture analysis methods
are given in [4][15]. The Grey Level Cooccurrence Method
(GLCM) [5] and the Run Lengths Method [2] are widely
used in satellite imagery [9][11] or in sidescan sonar imagery
[12][13]. Other approaches concern the Gibbs Random Field
Models [1], the Gabor �lters [3] and the AutoRegressive (AR)
models [6][7].
We are specially interested in 2D AR rotation invariant mod-
elisation reported in [7] for the four following advantages: 1)
spatial interactions are e�ciently taken into account; 2) AR
rotation-dependent models presented in [6] have shown good
classi�cation results on our sonar images; 3) the method is
rotation invariant and seems to be e�cient; 4) a reduced
number of relevant features is provided by this method.
To improve the e�ciency of the rotation invariant AR
method, we introduce three additional AR similar param-
eters which describe a larger neighbourhood. Spatial inter-
actions are then better taken into account. Other studies
in the �elds of Markov Random Fields [10] and AR Models
[8] have shown the interest of extending the neighbourhood
size.

An MLP is used to perform identi�cation tasks. A K-Nearest
Neighbour Algorithm is also used for comparison.
This paper is organized as follows : the method and its im-
provement are described in section 2 whereas feature analysis
is given in section 3. The 4th section illustrates the e�ciency
of the improved method applied to four types of natural
sidescan sonar images (with multiplicative noise): pebbles,
dunes, ridges and sand (see Figure 1). Finally, it gives some
comparative results.

2 MODELS AND FEATURE ESTIMATION

2.1 Basic Model

Let be I a M�M image and fy(p); p = (p1; p2) 2 
g the set
of pixel intensities where 
 = f0 � p1; p2 � M � 1g. The
�rst model applied to image I is described by the following
equation:

y(p) = �11

X
n2Nc

y(p+ n) +
p
�11:v(p) p 2 
 (1)

where Nc = f(0; 1); (0;�1); (1; 0); (�1; 0); (p2=2;p2=2),
(�p2=2;�p2=2); (p2=2;�p2=2); (�p2=2;p2=2)g, Nc is
called circular neighbourhood and v(p) is a correlated se-
quence with zero mean and unit variance. The parameter
�11 and the roughness parameter �11 are estimated by a
Least Square (LS) approach. See [7] for details about the
interpolation of neighbourhood pixel intensities and the LS
estimation. The following model is then used twice to calcu-
late the third parameter �11 called directional parameter:

y(p) =
X

n2 Nd

�ny(p+ n) +
p
�:w(n) p 2 
 (2)

where Nd is a neighbourhood set and f�n; n 2 Ndg the
set of AR parameters attached to Nd. In a recent study
[14], we established that ��n = ���n, where ��n are �n LS-
estimates. So, unlike [7] we �rst use Nd = f(0; 1); (1; 0)g and
then Nd = f(1; 1); (�1; 1)g. Finally, the directional parame-
ter �11 is given by:

�11 = maxfj�(1;0) � �(0;1)j; j�(1;1) � �(�1;1)j (3)

2.2 Improved Model

The neighbourhood considered in the last section is re-
stricted to 3�3 pixels. The directions taken into account
to estimate �11 are 0, 45, 90 and 135 degrees. We have noted
that a 5�5 pixel neighbourhood is required to obtain good
classi�cation results. So we propose to adapt and improve
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Figure 1: Four types of sea
oors (512�768 pixels). One
pixel represents about 100 cm2 on the sea
oor.
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Figure 2: Circular neighbourhood of the improved
model.

the models described in section 2.1 to run with a 5�5 pixel
neighbourhood and similarly estimate the three additional
rotation invariant parameters �22; �22 and �22.
The model described in eq.1 is used as starting point
to estimate �22 and �22. Nc is rede�ned: Nc =
f(0; 2); (0;�2); (2; 0)
,(�2; 0); (p2;p2); (�p2;�p2); (p2;�p2); (�p2;p2)g
(see Fig. 2).

The estimation of �22 and �22 is less complex in this case: one
pixel intensity y(p) is not depending on itself throughout the
interpolated pixel intensities y(n). This 5�5 pixel neighbour-
hood extended model has then the following �nal form:

y(p) = �22:
X
n2N

0

gn:y(p+ n) +
p
�22:v(p) (4)

The new neighbourhood set N
0

and the new gn coe�cients
are issued from the interpolation process. After calculations,
we obtain:

g(�1;�1) = g(�1;1) = g(1;�1) = g(1;1) = 0:2994
g(0;�2) = g(�2;0) = g(0;2) = g(2;0) = 1
g(�2;�2) = g(�2;2) = g(2;2) = g(2;�2) = 0:2117
g(�2;�1) = g(�1;�2) = g(�2;1) = g(�1;2)

= g(2;�1) = g(1;�2) = g(2;1) = g(1;2) = 0:2445
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Figure 3: Values of the six rotation invariant features
over 301 samples divided into four classes.

To calculate �22, we extend the method developed to es-
timate �11 to Nd = f(0; 2); (2; 0)g and then to Nd =
f(2; 2); (�2; 2)g. Moreover, we introduce two other direc-
tions de�ned by the set of AR parameters f�(�1;2); �(2;1)g
and f�(�2;1); �(1;2)g. The estimation of these four AR pa-
rameters by two distinct AR models leads to the following
expression for �22:

�22 = maxfj�(2;0) � �(0;2)j; j�(2;2) � �(2;�2)j,
j�(�1;2) � �(2;1)j; j�(�2;1) � �(1;2)jg (5)

3 FEATURE ANALYSIS

3.1 Feature appearance

We have �rst analyzed the behaviour of each of the six fea-
tures over 301 natural 64�64 sonar images belonging to the
following categories: pebbles (77), dunes (70), ridges (77)
and sand (77) (see Figure 3).
We note that �11 and �11 (left column of Figure 3) have
similar behaviours: the values of each parameter are quite
identical for the pebble and dune classes; they are very high
for the ridge class and very low for the sand class. Some
results given in [7] for images of Brodatz album (e.g. images
of pigskin, sand, wool or bubbles) show a similar behaviour
between these two features as well. Features �11 and �22 are
similar too. The calculation of the correlation coe�cients
between the six features corroborates these results (see Table
1) : �11 and �11 are highly correlated. So are �11 and �22
as well as �11 and �22.

3.2 Discriminant properties

The most important point to reach good classi�cation re-
sults is the ability of some combinations of these features to
separate the four considered sea
oors. Figure 4 shows the
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(�22)
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BBBB@

1:00 0:12 0:84 0:06 0:45 0:91
0:12 1:00 0:16 �0:48 0:93 0:02
0:84 0:16 1:00 �0:14 0:44 0:83
0:06 �0:48 �0:14 1:00 �0:43 0:05
0:45 0:93 0:44 �0:43 1:00 0:33
0:91 0:02 0:83 0:05 0:33 1:00

1
CCCCA

Table 1: Matrix of the correlation coe�cient values cal-
culated between the six parameters estimated over 301
images.
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Figure 4: Parametric representations of 301 images di-
vided into the four classes : pebbles, dunes, ridges and
sand. 4(a): an image is represented by a point de�ned
by the �11, �11 and �11 features; 4(b): an image is repre-
sented by a point de�ned by the �22, �22 and �22 features.

301 above mentioned sonar images in the space de�ned by
E1 = f�11; �11; �11g feature set (feature set issued from the
basic method, see Fig. 4(a)) and by E2 = f�22; �22; �22g
feature set (additional feature set issued from the proposed
method, see Fig. 4(b)). It is then obvious that these two
sets of features can discriminate the four types of sea
oors
e�ciently: four clusters, one for each class, are formed by
these two sets. Due to correlations between some features
and the discriminating power of each feature, subsets of
f�11; �11; �11g and of f�22; �22; �22g may be convenient too.
By visualizing graphs similar to those presented in Figure
4, we veri�ed that f�11; �11g and f�11; �11g were adequate
feature sets as well, whereas f�11; �11g worked poorly with
pebble/dune segmentation task.
We attempted to make use of a factor analysis method (based
on principal components) over the six features to reduce the
feature space while increasing the discriminating power of
the rotation invariant features. The results were disappoint-
ing (they were inferior or equal to those obtained without
factor analysis) but not surprising mainly for the following
reasons: 1) few features; 2) no non-signi�cant features; 3)
some correlations between signi�cant features.

3.3 Rotation invariance properties

Finally we have investigated the degree of invariance of E1

and E2 feature sets. Figure 5 shows the discriminating power
of E1 and E2 over a 300 sonar image database (called rotated
database)which was obtained as follows : one 512�768 image
was chosen for each class; each of them was rotated with
angles of rotation from 10� up to 80� with steps 10� plus
120� and 150� angles; each of these rotated images per class
was segmented into 64�64 images and some were selected to
form the rotated database. We note that the clusters are well-
formed too although they look slightly less separable than
those represented on Figure 4, probably due to the isolated
point (see Figure 5).
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Figure 5: Parametric representations of 300 rotated im-
ages divided into the four classes : pebbles, dunes, ridges
and sand. 5(a): an image is represented by a point de-
�ned by the �11, �11 and �11 features; 5(b): an image is
represented by a point de�ned by the �22, �22 and �22
features.

All the analyses presented in this section demonstrate that
all the features issued from the basic model (see section 2.1)
and those issued from the proposed improved model (see
section 2.2) are appropriate to discriminate the four types of
considered sea
oors.

4 CLASSIFICATION RESULTS

In this section, performances of the three feature sets E1, E2

and E3 = E1 [E2 are evaluated through a neural classi�er
(MLP) with one hidden layer. Classi�cation results are
also given for a K-Nearest Neighbour Algorithm (called
K-NNA) for comparison (the K-NNA requires about ten
more multiplications than the MLP). Previous experimental
tests have provided best results for an MLP with ten
hidden neurons and for a K-NNA with K=10. Two training
and test databases are used to perform identi�cation
tasks. Database lrn1 and database test1, the learning- and
associated test- base, are used to evaluate the discriminant
property of the three considered feature sets: the 301
samples of database lrn1 represent images (the same as
those used to analyze parameter behaviours, see Figure 3)
with the same orientation as the 288 images represented by
samples of database test1. Database lrn2 and database test2
are used to evaluate the rotation invariant nature of the
three feature sets. Samples of database lrn2 are issued
from images having di�erent orientations (rotated images
with relative angles of 10�, 20�, 30�, 40� and 50�) from the
images represented by samples of database test2 (rotated
images with relative angles of 60�, 70�, 80�, 120� and 150�).
Classi�cation results of Table 2 (obtained on database test1 )
show that performances are the same with MLP and
K-NNA. Furthermore, feature set E2 performs quite better
than E1 which performs very poorly for ridge recognition.
It is also obvious that combination of feature sets E1 and
E2 does not produce better results than E2 alone. This is
probably due to the existence of high correlations between
the features (remember Tab. 1). The results summarized
in Table 3 (obtained on Database test2 ) con�rm that the
proposed improved method performs better than the one
described in section 2.1.

Comparative study has �nally been conducted. The com-
pared method is a rotation invariant version of the Grey
Level Cooccurrence Method (GLCM) [5]. Cooccurrence ma-
trices are calculated for distances d of 1, 2, 3 and 4 and for
directions � of 0�, 45�, 90� and 135�. Selected features are
ASM (Angular Second Moment), CON (Contrast), COR



Recognition Rates in %
PE DU RI SA GLOBAL

E1
MLP 98 87 68 100 88

K{NNA 98 94 61 100 87

E2
MLP 98 100 94 92 96

K-NNA 97 100 93 95 96

E3
MLP 98 97 90 100 96

K-NNA 98 100 90 100 97

Table 2: Evaluation of feature's relevance. Recognition
rates obtained with two classi�ers for the three feature
sets E1, E2 and E3 and for the four classes PEbbles,
DUnes, RIdges and SAnd. Learning set (resp. testing
set) is database lrn1 (resp. database test1).

Recognition Rates in %
PE DU RI SA GLOBAL

E1
MLP 100 56 93 100 87

K-NNA 100 52 94 100 86

E2
MLP 100 74 100 100 93

K-NNA 97 73 100 100 92

E3
MLP 100 62 100 100 90

K-NNA 100 64 100 100 91

Table 3: Evaluation of feature's invariance. Recogni-
tion rates obtained with two classi�ers for the three fea-
ture sets E1, E2 and E3 and for the four classes PEbbles,
DUnes, RIdges and SAnd. Learning set (resp. testing
set) is database lrn2 (resp. database test2).

Recognition Rates in %

PE DU RI SA GLOBAL
GLCM 100 66 100 100 90
E2 100 74 100 100 93

Table 4: Recognition rates obtained with a MLP clas-
si�er, for the GLCM method and the E2 feature set,
for the four classes PEbbles,DUnes, RIdges and SAnd.
Learning set (resp. testing set) is database lrn2 (resp.
database test2).

(Correlation) and ENT (Entropy). To make these features
rotation invariant, we take the mean and the standard de-
viation of each feature, calculated over the four directions
for a given distance. Thus, 32 parameters are considered.
Comparative results are given in Table 4. The improved ro-
tation invariant method performs as well as GLCM for the
identi�cation of sand, ridge (strongly directional) and pebble
sea
oors and a little better for dune identi�cation. Further-
more, the rotation invariant method produces a reduced set
of relevant features. So it is much more e�ective. Due to its
only three features required, the extraction process is com-
putationally less expensive and so is the training stage.

5 CONCLUSIONS

Through this study, we have �rst shown that the rotation
invariant autoregressive method, developed a few years ago,
could be successfully applied to natural noisy sidescan sonar
images (with multiplicative noise). We have proposed an
improvement of this method which theoretically better de-
scribes the spatial dependencies as well as the orientation
of the textures. We have demonstrated on four types of

sea
oors that the proposed approach performs better than
the basic method and slightly better than the GLCM, with
the advantage over the latler of providing a very compact
parameter set.
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