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ABSTRACT

The aim of this paper is to compare, in the domain of the
Bearings-only Target Motion Analysis (BTMA) with two
observers, three approaches in terms of tracking
performances : the Interacting Multiple Models (IMM)
based on the Extended Kalman Filtering, the Hidden
Markov Models (HMM) and the approximated densities
filtering based on the maximum of entropy.

1. Introduction

The Bearings-only Target Motion Analysis (BTMA)
problem with two observers equipped with passive
sensors consists to estimate the position and velocity of a
maneuvering vehicle, in our case a plane, from bearings-
only measurements corrupted by noise. This is a non-
linear problem of estimation.

Figure 1.a. : Bearings-only Target Motion Analysis
(BTMA) with two observers

If we note XN = {x1,...xN} the state vector sequence to
estimate, which are position and speed in BTMA, and
ZN = {z1,...zN} the observation sequence at time {t1,...tN},
which are bearings in BTMA, then the goal of estimation
is to determine the conditional probability density
function (pdf), p(XN/ZN), which contains all the
information on XN.

In many cases, the assumption of a Gaussian pdf is done
which needs only two parameters (mean and variance) to
be completely determined.

The Kalman filtering is applied in the case of linear
systems with Gaussian initialisation. The Gaussian
property is preserved along the linear transformations and
the Bayesian corrections. The Kalman filtering gives an
estimation of the mean and the variance of the state given
the observations, which completely determined the
Gaussian pdf. A classical approach to extend the Kalman
filtering to the non-linear case is to expand the equations
in Taylor series about the nominal values. This lead to the
Extended Kalman Filter (EKF). This extension is an
approximation and the performances can be poor in the
case of high non-linearity or non-Gaussian problems.
An other point that is important to see is that the problem
of estimating a pdf is compatible with the evolution of
many sensors for example in the BTMA. Indeed more
than more parameters are measured (bearings, time
difference of arrival, Doppler,...) and this measured are
translated in pdf on the digitalized state space, not
necessarily in a Gaussian way because the behaviour of
the sensors is more than more well-known and this
knowledge as to be taken in account in order to enhance
the tracking. On the other hand, the estimation of a pdf is
multimodal (i.e. multitargets) when the Kalman filtering
is monomodal.
For the tracking, we need to follow the evolution of the
pdf. In this paper we examine two methods : the Hidden
Markov Model (HMM) and the approximated densities
filtering based on the maximum of entropy. In a general
point of view, we know the transition law p(xK/xK-1) and
the observation law p(zK/xK). Our aim is to estimate
p(xK/zK) recursively in time. At time k-1, we suppose to
know p(xK-1/zK-1). Due to the Markov assumption for x, we
can compute the prediction
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The knowledge of p(xK/zK) gives the possibility to give an
estimate  $x K= I(xK) of the state. For example :

I(xK) = x p(x zK K K
xK

/ )∫ or I(xK) =maxxK
(p(xK/zK)).

The aim of the methods is to propagate the pdf and
estimate I(xK).

2. The Interacting Multiple Models

The Interacting Multiple Models (IMM) in the case of
two passive-only sensors has been developed in [1]. This
algorithm is based on M Extended Kalman Filter (EKF)
in parallels, each of them corresponding to a particular
maneuvering hypothesis. Knowledge is introduced by
modelling the change of hypothesis with a Markov chain.
The complete equations are developed in [1].

3. The Hidden Markov Models

Elements on Hidden Markov Models (HMM) can be
found in [2]. Applications of the HMM to the problem of
tracking are developed in [3] and [4].
In the HMM with the Viterbi algorithm, the pdf is
estimated on a fixed grid of the state vector x and the
recursion is built following the equation
δ(xK) = p(zK/xK).maxXK-1

(p(xK/xK-1).δ(xK-1)).

Figure 3.a. : HMM and Viterbi algorithm

One particularity of the HMM is the fact that it doesn’t
introduce a formal model of evolution of the target as in
the IMM. A simple hypothesis of a maximal acceleration
for example is sufficient. One the other hand, if the user
wants it, it’s also possible and easy to introduce complex
prior information on the motion of the target.

We give here the mains equations :
Notations  :

N the number of states in the model,
Ot : Observation at time t,
B : observation probability distribution in the state j
  B = {bj(Ot)}, bj(Ot) = pr[Ot/state j at t], 1≤j≤N
A : state transition probability distribution
  A = {aij}, aij = pr[state j at t+1/state i at t], 1≤i,j≤N
π : initial state distribution
  π= {πi}, πi = pr[state i], 1≤j≤N

T : number of observations.
Viterbi Algorithm:

Initialization
δ1(i) = πibi(O1), 1≤i≤N

Récursion

( ) ( ) ( )δ δt i N t ij j tj i a b O= ≤ ≤ −max [ ]1 1

( ) ( )Ψt i N t ijj i a= ≤ ≤ −arg max [ ]1 1δ

2≤t≤T, 1≤j≤N
Termination

( )q iT i N T= ≤ ≤arg max [ ]1 δ
We get the state from the backtracking :

( )q qt t t= + +Ψ 1 1 , t = T-1,T-2, ...1

B is given by the model of sensor and can be on a analytic
form (uniform, Gaussian,...) or can be given in a numeric
form, more or less complex, in the state space. In the
example of section 5, we have taken a Gaussian
distribution.

A can be fixed with many criterion. In our case, we
suppose that at time t the target can have a maximal
acceleration (for example ±3g). This give the states
possible at time t+1, each of them having the same
probability. As we see, this hypothesis is very simple and
could be easily improved in order to enhance the
performances.

If we know nothing about the target, except some large
bounds on position and speed, π can be an uniform
distribution on the state space. On a other hand, it's
possible to introduce prior information to reduce
computation. One way to introduce this information is to
apply an algorithm as least squares or IMM during a few
seconds and then to switch quickly on HMM using the
results of the first algorithm.

In our case, the state space is in 4 dimensions and the
targets are highly maneuvering. The hypothesis chosen
for A are very simple and the number of states possible
can be very high. In order to reduce the computation, we
have chosen a sub-optimal version of the HMM which
consists on keeping the Nmax states the more probable at
time t.

4. Approximated densities filtering

In the approximated densities filtering ([5], [6]), the goal
is to find the pdf of a system at time t in such a way that it
maximises the entropy of the system at this time. This

research is done under constraints γ i  with γ ϕi iE x= [ ( )]

where ϕ i  are functions that fit the problem. It can be
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where λi are Lagrange’s multipliers. As indicated in the
introduction, there is a prediction followed by an
evolution, and then the update p(xK/zK) is obtained with
Baye’s rule.

To describe the principle, we consider the non-linear
model :
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where w and v are the state and observation noises.
The goal is to determine at each time t the pdf, p(x/z) with
an exponential density which maximizes the entropy of
the state under constraints.

p(x xi i
i

) exp( . ( ))= ∑λ ϕ avec λ i ∈ ℜ

Prediction.

The goal is to compute p(xt/zt-1). At this point, we are at
time t-1 and we know p(xt-1/zt-1).

Constraints γi(t)
We have, at time t :
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Knowing ϕ i g(x t w t( ( ), ( )))− −1 1 , p(xt-1/z1->t-1) and fw,

it’s possible to compute the constraints γi.

Lagrange’s parameters λi(t) :
At this point, we have computed the constraints γi(t).
We know that
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In order to calculate the Lagrange parameter’s λi(t),
we have to solve the following system of (k+1)
equations :
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After that, we can compute :
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Update
The goal is to compute p(xt/zt). At this point we are at
time t, we have computed p(xt/zt-1) and have an
observation zt.

With the equation z(t) = x(t) + v(t), the predicted law
improves with the observation zt.

In writing :
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One can easily obtain :
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Choice of functions ϕi in BTMA

In many cases, the integral in (1) is not computable
analytically. One method to approximate this integral
is to choose functions ϕi as part of a grid of the space
(position, speed) and then to approximate the
prediction by Monte-Carlo methods. This principle is
also used in [7].

The figure 4.a shows the principle of the method : the
prediction is done by Monte-Carlo’s runs, and the
evolution by Bayes’rule.

PREDICTION   EVOLUTION

Figure 4.a. Monte Carlo’s method.

5.  Simulations

We have done a simulation with a maneuvering plane
being at 50 km form the two observers. The probability of
detection is 0.8 and one of station has no measurements
during a few seconds (target hidden by a hill). The
observations are refreshed with a period of 1second.

Real Target



We show on figure 5.a the estimation of density by the
algorithm described in section 4. The estimator chosen is
the maximum of the density at each time, the real
trajectory is also drawn. We have tested the three
algorithms IMM, HMM and approximated densities on
the same scenario. On figure 5.d., we represent the error
in distance. One can see that HMM and approximated
density have good performances, particularly when there
is an observer alone. This kind of behaviour has been
verified with Monte-Carlo test on many simulations and
many cases. Note that a few simulations have been done
with the "optimal" HMM and the results are equivalents
to those obtained with the approximated density.

Vue détaillée
2D et 3D

Légende :

Traj. réelle.

Traj. estimée.

Mesures.

Probabilté

Sens de l’évolution

Visualisation des Densités Approchées sur un scénario.

Figure 5.a. Approximated density.
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Figure 5.b. Zoom 2D on the approximated density.
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Figure 5.c. Zoom 3Don the approximated density.
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Figure 5.d. Distance error for IMM, HMM and
approximated density.

6. Conclusion

We have seen in this paper the application of three
algorithms to the BTMA problem with two observers. It’s
seems that the HMM and the approximated densities have
good performances comparing it to the Extended Kalman
Filtering and it could provide an enhancement of the
performances in a complete association-fusion-tracking
chain. In terms of computations the EKF needs less
calculations than the two others algorithms. The next step
that we are studying is to simplify the HMM and the
approximated density algorithm in order to have a good
compromise computations-performances.
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