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ABSTRACT

Multiresolution image and video coding schemes o�er both
excellent coding e�ciency and the ability to support scala-
bility. This paper gives an introduction to the principles of
multiresolution coding of image and video signals. Besides
critically sampled subband pyramids, oversampled pyramid
decompositions are discussed. Oversampled subband pyra-
mids are often better suited for scalable coding schemes.
Solutions to the bit allocation problem for subband coders
with and without quantization noise feedback are presen-
ted. Finally, we brie
y review spatio-temporal pyramids as
the most promising approach to scalable video coding.

1 INTRODUCTION

The integration of images and video into multimedia sys-
tems requires e�cient compression techniques of low com-
plexity. Compression can take advantage of the statistical
dependencies in images and video, and it should also ex-
ploit the limitations of human visual perception and omit
irrelevant signal components. Multiresolution coding is not
only able to address both principles in an elegant and ef-
�cient way, but can as well be utilized for scalable coding
[1, 2, 3]. Scalability means that an already compressed si-
gnal can be decoded at di�erent quality levels, using only
an appropriate subset of bits. The reconstruction of lower
quality renderings not only requires a lot fewer bits, but
also signi�cantly less computation than the reconstruction
of the full quality reconstructed image.
This paper gives an introduction to multiresolution

image and video coding. We motivate why subband co-
ding and especially subband pyramid coding are e�cient
for images and video. Besides critically sampled subband
pyramids, oversampled pyramid decompositions are discus-
sed as well since they are better suited for applications
requiring scalability. We also review recent analytical so-
lutions to the bit allocation problem for multiresolution
coders with and without quantization noise feedback. Fi-
nally, we brie
y discuss spatio-temporal pyramids as the
most promising approach to scalable video coding.

�now with Institute for Media Communication, German National
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A more detailed introduction to multiresolution de-
composition and subband image coding can be found in
[4, 5, 6, 7]. A good overview about multiresolution video
coding is given in [8, 9].

2 MULTIRESOLUTION IMAGE CODING

Multiresolution image coding is based on the analysis of
an image at a hierarchy of resolutions or scales. It is mo-
tivated by the observation that typical images possess a
power spectral density that falls o� rapidly towards high
spatial frequencies. The rate of decay is most rapid at low
frequencies and smaller at high frequencies. Thus, most
of the signal energy is contained in lower frequency com-
ponents, and a coarsely sampled version capturing only the
lowpass components is already a good approximation in the
mean squared error (MSE) sense. Additionally, the human
visual system is less sensitive to errors at high spatial fre-
quencies. Rate distortion theory suggests that an optimal
coder for stationary Gaussian signals of arbitrary power
spectral density splits the original signal into spectral com-
ponents of in�nitesimal bandwidth and encodes them in-
dependently [10]. This is the basic motivation for subband
coding. Of course, arbitrarily small bandwidths cannot be
achieved for �nite-size images, and they would not even
be desirable in practical applications, since spatial locali-
zation of the basis functions representing the image would
be lost entirely. Poor localization of image features such as
edges after �ltering tends to introduce subjectively annoy-
ing artifacts when combined with lossy compression of the
subband signals.

2.1 Subband pyramid decompositions

Subband pyramid decompositions are a good compromise
between frequency selectivity and spatial localization. Be-
cause of the typical shape of the power spectrum of natural
images, pyramid decompositions produce subband signals
that tend to be spectrally 
at, such that simple memory-
less coding of the individual samples within each band is
justi�ed and indeed often used in practice. Pyramid de-
composition can be accomplished e�ciently by cascading
horizontal and vertical two-band �lter banks as shown in
Fig. 1. Each �ltered signal is subsampled by a factor of 2
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Figure 1: Commonly used �lterbank structure to obtain cri-

tically sampled subband pyramid decompositions. H0 and H1

are lowpass and highpass analysis �lters, G0 and G1 the corre-

sponding synthesis �lters. By recursively applying the analysis

stage to the lowpass signal LP1 additional layers are obtained.

The three subbands marked HP0 together contain the highpass

signal components.

horizontally or vertically, such that the number of samp-
les before and after subband decomposition is the same.
The subband signals are quantized and encoded using ap-
propriate �xed or, better, variable length coders. At the
decoder, the subband signals are decoded, up-sampled and
passed through a bank of synthesis �lters. The output si-
gnals of the synthesis �lters are �nally added to yield the
reconstructed signal.

The problem of designing analysis and synthesis �lter
banks such that the synthesized image is a perfect recon-
struction of the original when the bit-rates are high is well-
understood [4, 7] and need not be discussed here. Note that
critically sampled subband pyramid decompositions con-
tain the popular "Discrete Wavelet Transform" as a special
case. Figure 2 shows an example of a wavelet decomposed
image. While current image and video coding standards
are based on the Discrete Cosine Transform (DCT), the
discrete wavelet transform is very seriously considered as
part of the JPEG 2000 standardization e�ort.

Many state-of-the-art subband pyramid image coders ob-
tain increased coding e�ciency by exploiting statistical de-
pendencies between subbands. The basic scheme was in-
troduced by Shapiro as the embedded zero-tree wavelet
algorithm (EZW) [11]. The algorithm observes that if a
coe�cient at a low frequency is zero, it is highly likely that
all the coe�cients at the same spatial location at all higher
frequencies will also be zero. Re�nements of this idea have
been presented, e.g., in [12].

With subband pyramid coding we can achieve scalabi-
lity by extracting a subset of the subbands starting with
the low frequency subbands. Note that reconstruction ba-
sed on only a subset of subbands can be problematic in
terms of perceptual quality, especially for �nely tuned, long
�lters. Especially, aliasing cancellation in perfect recon-
struction �lter banks only works if all subbands are used
for reconstruction. Therefore, critically sampled subband
decompositions are less suitable for applications requiring
frequent rendering of the image at reduced resolutions or
quality levels [1, 13].

2.2 Oversampled pyramid decompositions

Besides critically sampled subband pyramids, oversampled
pyramid decompositions can be employed as well. They
were �rst introduced as the Laplacian pyramid by Burt

Figure 2: Original test image Lenna (top), and the same image

decomposed into 13 bands by a discrete wavelet transform (bot-

tom).

and Adelson in 1983 [14] and successively re�ned, e.g. by
[8, 15, 3]. An input picture is �rst lowpass �ltered and
downsampled. By interpolating the low resolution image
back to its original resolution a prediction of the original
image is obtained. The prediction error can be viewed as a
highpass subband signal which is not subsampled, unlike in
critically sampled decompositions. The decomposition into
a lower resolution image (LP ) and a highpass error signal
(HP ) can be repeated for the lowpass image (LP ) to ge-
nerate additional pyramid layers. Note that the number of
samples increases by up to 1=3 for 2:1 two-dimensional sub-
sampling. On the other hand, one gains complete freedom
in choosing appropriate �lters for downsampling and inter-
polation. Lower resolution images within predictive reso-
lution pyramids often have better subjective image quality
than those obtained from critically sampled subband pyra-
mids [8].

Interpolation to predict the higher resolution image can
be based on either the �ltered and subsampled version of
the original image (open-loop coding) or its quantized ver-
sion (closed-loop coding) (Fig. 3). The decoder is identical
in both cases, hence open-loop and closed-loop coding can
be freely combined. Burt and Adelson's Laplacian pyramid



was introduced as an open-loop coder, and most researchers
have considered this simpler scheme since. Closed-loop py-
ramid coding, however, which feeds back the quantization
error in the spirit of Di�erential Pulse Code Modulation
(DPCM), possesses several advantages over open-loop co-
ding, as will be discussed in the next section.
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Figure 3: The �rst two stages of a pyramid codec for over-

sampled decompositions. OL and CL denote switch positions

to select between open-loop and closed-loop coding. In contrast

to open-loop coding, closed-loop coding employs quantization

noise feedback at the encoder. The decoder is the same for

both cases. LPi denotes the lowpass signal, HPi the highpass

signal within layer i.

2.3 Bit Allocation

After an appropriate multiresolution decomposition, com-
pression is commonly achieved by applying scalar quanti-
zation or vector quantization followed by entropy coding
[16]. A detailed discussion of appropriate techniques can
be found in [10].

A general problem in multiresolution coding schemes is
the problem of optimal bit allocation. Since more than one
quantizer is involved in the coding process (see Figs. 1 and
3) the question arises how to distribute an available maxi-
mum number of bits among the quantizers in an optimal
way. 'Optimal' often means minimum MSE in the full reso-
lution reconstructed image but other optimization criteria
are possible as well [17].

For a given coding scheme, the bit allocation problem can
always be solved experimentally by enumerating all pos-
sible bit allocations and selecting the optimal one which
ful�lls the bitrate constraint. This brute force approach
is impractical for real-world applications. Under the as-
sumption of a Gaussian source and high rate coding it is
possible to derive analytical solutions for critically sampled
subband coding schemes [5]. In the following, we review a
generalization applicable to critically sampled as well as
oversampled decompositions with and without noise feed-
back [18].

Let us consider the open-loop case �rst. We assume a
stationary Gaussian input signal with memory and inde-
pendent high-rate memoryless coding of each subband si-
gnal. Let R denote the available number of bits for which
the MSE of the reconstructed image should be minimized,
and let � denote the power transfer factor of the interpo-
lation �lter used in the synthesis stage. gl and �2l specify

the spectral 
atness and variance of subband signal l. By
using a Lagrangian approach we obtain the optimum rates
rl of a decomposition into L subbands as

rl =
R

M
+

1

2
log2

�l � gl � �
2
l =nlQL�1

k=0 (�
k
� gk � �

2
k=nk)

n
k

M

; (1)

where nl = Nl=N0 is the ratio between the number of samp-
les in layer l (Nl) and the number of samples in the full re-
solution layer (N0). The redundancy due to oversampling

is therefore M =
PL�1

l=0 nl. For critically sampled decom-
positions M = 1, for oversampled decompositions M > 1.
To obtain a solution for closed-loop pyramid coding sche-

mes we have to take into account that, due to noise feed-
back, �ltered quantization noise introduced in the previous
stage is added to the subband signal before it is encoded.
If we neglect that gl depends on rl+1; : : : ; rL�1, we arrive
at an analytical solution to the bit allocation problem as:

rl =

8><
>:

1
2
log2(

��gl��
2
l

gl�1��
2
l�1

� wl); l > 0

R�

PL�1
l=1 nl � rl; l = 0

(2)

wl =

8<
:

nl�1�nl
nl�nl+1

;
nl�1�nl
nl�nl+1

> 0

1; nl = nl�1 = nl+1

with nL = 0. The rather tedious derivation of (1) and
(2) is due to Horn and Wiegand and can be found in [19].
Recently an equivalent solution for the special case of a
regular decomposition with nl = 1

4l
has been published

independently of our work in [20]. In contrast to subband
codecs without noise-feedback, the rates rl for l > 0 are
independent of the overall bitrate R and determined only
by the statistics of the subbands. In layer 0 the remaining
bits after quantization of all other layers are spent. A major
drawback of the optimal solution for closed-loop coding
is, that the distortion within lower resolution layers can
become quite high compared to the distortion in the full
resolution layer which is undesirable for scalable coding
applications. A good heuristic is to use an optimal open-
loop bit allocation for closed-loop coding [18].
Another interesting observation is that coding with noise

feedback outperforms coding without noise feedback at hig-
her bit rates. This can be derived from the solutions given
in (1) and (2) and has been veri�ed in coding simulations
[18].

3 MULTIRESOLUTION VIDEO CODING

Several authors have tried to extend the idea of image sub-
band coding to video coding by employing critically sam-
pled 3-D subband coding schemes. Due to the associated
delay and low coding e�ciency, those approaches are not
able to compete with motion compensated coding methods.
It seems di�cult to naturally include motion compensa-
tion within a critically sampled subband coding scheme
[21, 22, 23, 24, 25].
Spatio-temporal resolution pyramids �rst proposed in

[13] are a more suitable approach for scalable video coding.



I P P P P P P P I
Sp

at
ia

l s
ca

le

Time

Figure 4: Spatio-temporal pyramid for scalable video coding.

The original video sequence is represented at di�erent spatial

and temporal scales. Encoding is done by a pyramid codec as

shown in Fig. 3 which can be easily extended to include motion

compensated coding.

An example is shown in Fig. 4. [3] describes an e�cient vi-
deo codec based on a motion compensated spatio-temporal
pyramid combined with E8-lattice quantization which is
used for scalable Internet video transmission. It combines
an oversampled pyramid decomposition with motion com-
pensation loops of the lowpass signals (LPi of Fig. 3) in
each layer.
Similar spatio-temporal resolution pyramids have re-

cently also been included as scalable extensions of DCT-
based motion-compensated video coding standards, such
as ITU-T H.263+ or ISO MPEG-4.

4 CONCLUSION

Multiresolution image coding is based on the analysis of an
image at a hierarchy of resolutions or scales. For compres-
sion, subband pyramid decompositions are a good compro-
mise between frequency selectivity and spatial localization.
Critically sampled subband decompositions have been suc-
cessfully applied to image coding. We argue that, for ap-
plications requiring scalability, it is advantageous to use
oversampled pyramid decompositions. Analysis and syn-
thesis �lters can be chosen freely and motion compensa-
tion can be easily incorporated for scalable video coding.
An important problem in multiresolution coding is bit al-
location. The well-known analytical solution for critically
sampled Gaussian subband signals has recently been gene-
ralized to open-loop and closed-loop coding of oversampled
pyramid decompositions. These solutions as well as simu-
lations with natural images show that closed-loop coding
has several advantages over open-loop coding which makes
it more suitable for practical applications.
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