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ABSTRACT

A stable alternative is described for the ‘standard’
systolic MVDR beamforming algorithm of McWhirter
and Shepherd [4], which is known to suffer from lin-
ear round-off error build-up. The algorithm combines
a so-called inverse QR-updating algorithm, with (part
of) the McWhirter and Shepherd procedure. Simi-
lar to the McWhirter and Shepherd algorithm, it is
amenable to parallel (pipelined) implementation. Un-
like the McWhirter and Shepherd algorithm, it is sta-
ble numerically, and hence does not need repeated re-
initializations.

1 INTRODUCTION

The minimum variance distortionless response (MVDR)
beamforming problem amounts to minimising, in a least
squares sense, the combined output from an antenna
array subject to K independent linear equality con-
straints, each of which corresponds to a given ‘look di-
rection’. By ‘independent’, we mean that the minimum
array output is computed for each constraint in turn.
In other words, K independent recursive least squares
problems have to be solved at once. The aim is to derive
efficient (parallel) algorithms for this.

In [3], a parallel solution is given for the linearly con-
strained recursive least squares problem, with a con-
straint pre-processor coupled to a Gentleman-Kung tri-
angular array [1]. For MVDR beamforming, one would
then need K such triangular arrays, which is ineffi-
cient. In [4], however, McWhirter and Shepherd have
shown how the beamforming problem can be solved with
only one triangular array, coupled to a constraint post-
processor. This is commonly accepted as the ‘standard’
solution to the problem. However, in [6], it has been
shown that this approach suffers from linear roud-off er-
ror build-up, and hence needs repeated re-intialization.

In [6], an alternative procedure has been developed,
which is based on so-called inverse QR~updating (for
which a pipelined implementation has been developed in
[7]), combined with a certain data pre-transformation.
Here, we improve upon those results by picking a par-
ticular transformation matrix which allows a much eas-
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ier exposition, and which is such that the correspon-
dence with the McWhirter and Shepherd procedure is
much more clearly displayed. The resulting algorithm
is fully stable and so there is no need for repeated re-
initializations. Furthermore, as the inverse updating
structure is preserved, it is readily amenable to parallel
(pipelined) implementation.

In section 2 and 3, the McWhirter and Shepherd pro-
cedure and the inverse updating procedure are reviewed.
In section 4, it is shown how, partly based on the results
of [6], the two procedures can be combined into a con-
venient MVDR algorithm. Part of the exposition (and
notation) here is borrowed from [4] and [6].

2 McWHIRTER AND SHEPHERD PROCE-
DURE

The minimum variance distortionless response (MVDR)
beamforming problem amounts to minimising, in a least
squares sense, the combined output from an antenna
array subject to K independent linear equality con-
straints, each of which corresponds to a given ‘look di-
rection’. At each sample time ¢,, the aim is to evaluate
the a posteriori residuals

eDn) = ul(n)-whn) i=1,.... K

where u(n) is the p-element vector of signal samples re-
ceived by the array at time t,, and w(?) (n) is the vector
of weights which minimises the quantity

@)l = [1UMm)-w ()|
subject to
T . wd(n)=1.

Here, U(n) is the weighted matrix of all data received up
to time t,, i.e. (with 8 the exponential ‘forget’ factor)

gt (1)
Bl (2)
U(n) = .

B°u” (n)
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Figure 1: McWhirter and Shepherd algorithm

Assuming that a QR decomposition has been carried
out on the data matrix U(n) so that

U = Q- R

where Q(n) is unitary and R(n) is upper triangular,
then it is easily shown that

e (n) = UT(n)'WR_l(n)Z(“(n)
) w (n)
where
zZ9(n) = R (n)c®*

In [4], McWhirter and Shepherd have shown how the
beamforming problem can be solved with triangular up-
dating (QR-updating) combined with constraint post-
processor. A signal flow graph of this solution is shown
in Figure 1. This commonly accepted as the ‘standard’
solution to the problem.

In Figure 1, the triangular array stores and updates
the triangular matrix R(n), see [1]. The procedure is
based on elementary unitary transformations (cf. ‘rota-
tion cells’) of the form

a | cosf e¥sin | [ a
b | T | —e ¥sing cos @ b |-

Transformations are computed on the diagonals (such
that one output element is zeroed) and then applied to
the other elements in the same row. (The angles 6 and
1 are calculated implicitly and other parameters are in
fact passed along the rows but for convenience we label
the data with 8 and v.)

For each ‘look direction’ (constraint), a right-hand
side column is added that stores and updates z(V) (n) =
R~ (n) - c¢(V* In [4], it is proved that the right-hand
side columns can be updated by means of the unitary
transformations that are computed in the triangular ar-
ray (with a O-input at the top of each right-hand side
column, as indicated in the graph). Furthermore, the
beamformer outputs can be computed as indicated at
the bottom of the Figure, i.e. by multiplying the out-
put of each right-hand side column with a factor v (equal
to the product of the cosines of all the rotation angles)
and dividing the result by the squared norm of the col-
umn (the computation of these norms is left out in the
graph, but can easily be added as a top-to-bottom accu-
mulation). Note that the triangular part has the usual
weighting with 3, whereas the right-hand side columns
have a weighting with  (because of the R (n) in the

formula for z()(n)). We assume that the reader is fa-
miliar with this procedure, and refer to [4] for further
details.

In [6], it has been shown that this approach suffers
from linear round-off error build-up. In particular, the
equation z() (n) = R™H(n)-c(9* indicates that the pro-
cedure has some redundancy (as ¢(9* is a fixed vector,
and the R~ (n) is already available from the stored
R(n).). In a finite wordlength implementation, the
above equation will be satisfied only up to a round-off
error, which is observed to grow in each iteration. As
a result, the McWhirter and Shepherd procedure needs
repeated re-intialization, which is undesirable. Here, an
alternative scheme is presented, which does not need
re-intialization.

3 INVERSE QR-UPDATING

The inverse updating procedure [5] is shown in Figure
2. Instead of R(n), we now store and update R~ (n)
(denoted here as S(n)). It has been shown that the
updating transformations are the same as those given
in Figure 1, but now derived in a different fashion (by
means of the matrix-vector product v = R~ (n)-u(n),
as indicated). A mathematical description is as follows :

Algorithm Inverse Updating [5]
Given R~ (n —1)
Input u(n)

Step 1. Form the matrix-vector product

v= —%R_H(n ~1) - u(n)
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Figure 2: Inverse updating algorithm

Step 2. For ¢ = 1,...,p determine unitary
transformations Q; so that

[%]ﬁqpqp_l...ql-[i]

A%

Step 3. Update R™H

il -a

In Step 2, Q; is a plane transformation acting upon the
. 1

first and the (74 1)-st component of Q;—; ... Q- {T] ,
such that the (i+1)-st component is zeroed. For details,
we refer to [5].

It can easily be proved that the 4, resulting from Step
2, satisfies

1

p .
iy cosB;

which will be useful in the MVDR procedure.
In [8], it is shown that this procedure is numerically
stable (despite the exponential weighting with %) In

d =

[7], it is shown that this algorithm can be accomodated
for parallel (fully pipelined) implementation.

Figure 3: MVDR algorithm

4 INVERSE QR-UPDATING BASED MVDR
BEAMFORMING

In Figure 3, it is shown how Figure 1 and 2 can be
combined into a convenient MVDR algorithm. Now,
instead of R(n) ", we store and update

o

R(n)H =R(n)H . { C ‘ — ]

where
C=[ e |...|cmn].

The stored matrix thus contains the z()(n) -columns
of Figure 1 (left-hand part) as well as the (remaining)
right-hand part of R(n)~H (Figure 2).

To obtain consistent results, the input vectors have to
be pre-transformed, i.e. the vectors fed into the array
are

ﬁ(n):[c‘%}_l-u(n).

(Note that the transformation matrix is a fixed matrix.)
For this to be possible, we assume that the topmost
K rows of C' constitute an invertible K x K matrix.
Whenever the look directions are linearly independent,
a permutation can be applied such that this is indeed
the case.



It is readily checked that, because of the pre-
transformation, the computed v is unchanged

- -1gp n) H -a(n :—l n) . u(n
v=—5R0) (n) = —3R(n) (n),

so that the transformations @i,...,Q, are also un-
changed. ;From this it follows that Figure 3 is indeed a
valid combination of Figures 1 and 2. A mathematical
algorithm description is as follows :

Algorithm MVDR [5]
Given R~H(n — 1)
Input u(n)

Step 1. Pre-transformation
0 1!
ﬁ(n):{C"T] -u(n)
Step 2. Form the matrix-vector product
1.
v = —BR_H(n —1)-a(n)

Step 3. For ¢ = 1,...,p determine unitary
transformations Q; so that

5] 1
[T_ < QpQp-1-.-Q1 - [T]

Step 4. Update R~H

kT 0
Ry | S e S R
Step 5. Compute outputs ¢ =1,..., K
X . 1
@D () = kO . _
") REOIIE

where z() () is the i-th column of R~ (n), and k(® is
the i-th component of k.

The resulting algorithm is fully stable, which follows
from the proved stability of the inverse QR-updating
procedure [8], and so there is no need for repeated re-
initializations. Furthermore, as the inverse updating
structure is preserved, it is readily amenable to parallel
(pipelined) implementation, see [7].

Suffice it to say that the MVDR procedure of [6]
works with a more general data pre-transformation ma-
trix 7. A more extensive mathematical derivation is
then needed to prove that the algorithm actually works.
Also, there is no obvious connection between the result-
ing algorithm and the McWhirter and Shepherd proce-
dure. Here, with T' = [ c %
fied that the algorithm (figure 3) is a valid combination
of the McWhirter and Shepherd procedure (figure 1)
and the inverse QR-updating procedure (figure 2), and
the connection between the resulting algorithm and the
McWhirter and Shepherd procedure is very apparent.

}, it is readily veri-

5 CONCLUSIONS

A stable alternative is described for the MVDR, beam-
forming algorithm of McWhirter and Shepherd. This
algorithm employs transformed data in an inverse QR-
updating scheme. This algorithm is stable numerically
as well as amenable to parallel (pipelined) implementa-
tion.
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