
ON FORWARD-BACKWARD MODE FOR DIRECTION

OF ARRIVAL ESTIMATION

Magnus Jansson
Dept. of Signals, Sensors, & Systems
Royal Institute of Technology (KTH)
SE-100 44 Stockholm, SWEDEN

Tel: +46 8 790 7425, Fax: +46 8 790 7329
magnus.jansson@s3.kth.se

Petre Stoica
Systems & Control Group

Uppsala University
SE-751 03 Uppsala

SWEDEN

ABSTRACT

We apply the MODE (method of direction estimation)
principle to the forward-backward (FB) covariance of
the output vector of a sensor array to obtain what we
call the FB-MODE procedure. The derivation of FB-
MODE is an interesting exercise in matrix analysis,
the outcome of which was somewhat unexpected: FB-
MODE simply consists of applying the standard MODE
approach to the eigenelements of the FB sample co-
variance matrix. By using an asymptotic expansion
technique we also establish the surprising result that
FB-MODE is outperformed, from a statistical stand-
point, by the standard MODE applied to the forward-
only sample covariance (F-MODE). We believe this to
be an important result that shows that the FB approach,
which proved quite useful for improving the performance
of many suboptimal array processing methods, should
not be used with a statistically optimal method such as
F-MODE.

1 INTRODUCTION

MODE is a method of direction estimation by means of
a sensor array, which is known to be statistically e�cient
in cases when either the number of data samples (N) or
the signal-to-noise ratio (SNR) is su�ciently large [1, 2].
For uniform and linear arrays (ULAs) the implemen-
tation of MODE requires only standard matrix opera-
tions (such as an eigendecomposition) and is thus very
straightforward. In fact in the ULA case MODE is a
clear candidate for the best possible (i.e., computation-
ally simple and statistically e�cient) array processing
method.
We stress that the aforementioned statistical e�-

ciency of MODE holds asymptotically (in N or SNR). In
short-sample or low-SNR cases other methods may pro-
vide better performance. The forward-backward (FB)
approach is a well-known methodology that has been
successfully used to enhance the performance of a num-
ber of array signal processing algorithms [3, 4]. Recently
this approach has been used in conjunction with MODE
probably in an attempt to obtain enhanced (�nite sam-
ple or SNR) performance [5]. More exactly in the cited
publications the standard MODE approach was applied
to the eigenelements of the FB sample covariance ma-
trix.
The �rst problem we deal with in this paper concerns

the formal application of the MODE principle to the

FB sample covariance. After an exercise in matrix anal-
ysis we prove the somewhat unexpected result that FB-
MODE should indeed consist of applying the standard
MODE to the eigenelements of the FB sample covari-
ance matrix.
Then we go on to establish the asymptotic statisti-

cal performance of FB-MODE. Because the standard
F-MODE is asymptotically statistically e�cient (in the
sense that it achieves the Cram�er-Rao bound (CRB))
[1, 2], we cannot expect FB-MODE to perform better
in asymptotic regimes. What one might expect is that
FB-MODE outperforms F-MODE in non-asymptotic
regimes and that the two methods have the same asymp-
totic performance. We show that the conjecture on iden-
tical asymptotic performances, even though quite nat-
ural, is false: FB-MODE's asymptotic performance is
usually inferior to that of F-MODE. Regarding the com-
parison of the two methods in non-asymptotic regimes,
because the �nite-sample/SNR analysis is intractable,
we resort to Monte-Carlo simulations to show that F-
MODE typically outperforms FB-MODE also in such
cases.
In conclusion, the FB approach { which has been suc-

cessfully employed to enhance the performance of sev-
eral array signal processing algorithms { cannot be rec-
ommended for use with MODE. This result also shows
that the related subspace �tting or asymptotic maxi-
mum likelihood approaches of [1] and [2], which pro-
duced the statistically e�cient MODE in the forward-
only case, may fail to yield statistically optimal estima-
tors in other cases.

2 DATA MODEL

Let x(t) 2 C
m�1 denote the output vector of a ULA

that comprises m elements. The variable t denotes the
sampling point; hence, t = 1; 2; : : : ; N; where N is
the number of available samples. Under the assumption
that the signals impinging on the array are narrowband
with the same center frequency, the array output can be
described by the equation

x(t) = As(t) + n(t): (1)

Here, s(t) 2 C d�1 is the vector of the d signals (trans-
lated to baseband) that impinge on the array, n(t) 2
Cm�1 is a noise term, and A is the Vandermonde ma-



trix

A =

2
664

1 : : : 1
ei!1 ei!d

...
...

ei(m�1)!1 : : : ei(m�1)!d

3
775 ;

where f!kgdk=1 are the so-called spatial frequencies. The
following assumption, frequently used in the array pro-
cessing literature, is also made here: the signal vector
and the noise are temporally white, zero-mean, circular
Gaussian random variables that are independent of one
another; additionally, the noise is spatially white and
has the same power in all sensors. Mathematically, this
assumption implies that

Efs(t)s�(s)g = P0�t;s ; Efs(t)sT (s)g = 0; (2)

Efn(t)n�(s)g = �2I�t;s ; Efn(t)nT (s)g = 0; (3)

where E is the statistical expectation operator, �t;s is the
Kronecker delta, and the superscripts � and T denote
the conjugate transpose and the transpose, respectively.
A principal goal of array processing consists of esti-

mating f!kgdk=1 from fx(t)gNt=1. Once f!kg are esti-
mated, the directions (also called angles-of-arrival) of
the d signals can be easily obtained.
It follows from (1), (2)-(3) that the array output x(t)

is a temporally white, zero-mean, circular Gaussian ran-
dom variable with covariance

Efx(t)x�(t)g = AP0A
� + �2I ,R0: (4)

Let J denote the reversal matrix of dimension m�m,

J =

2
664
0 : : : 0 1
0 1 0
... ���

...
1 : : : 0 0

3
775 :

It is readily checked that

JAc = A�; (5)

where the superscript c stands for the complex conju-
gate, and

� = diagfe�i(m�1)!1 : : : e�i(m�1)!dg:

Hence, we have

JRc
0J = A�Pc

0�
�A� + �2I:

Let

R =
1

2

�
R0 + JR

c
0J
�
= APA� + �2I; (6)

where P = 1
2

�
P0+�P

c
0�

�
�
: In the equations above, R0

is the so-called \forward" covariance matrix, whereas
R is called the \forward-backward" covariance. It will
be useful for what follows to observe that R0 and R
have the same structure: the only di�erence between

the expressions in (4) and (6) for these two matrices is
that P0 in R0 is replaced by P in R.
The sample covariance matrices corresponding to R0

and R are de�ned as

R̂0 =
1

N

NX
t=1

x(t)x�(t);

and

R̂ =
1

2

�
R̂0 + JR̂

c
0J

�
: (7)

It is well known that, under the assumptions made,

R̂0 and R̂ converge (with probability one and in mean
square) to R0 and, respectively, R, as N tends to in-

�nity. Hence R̂0 and R̂ are consistent estimates of the
corresponding theoretical covariance matrices. In fact

R̂0 can be shown to be the (unstructured) maximum
likelihood estimate (MLE) of R0. By the invariance

principle of ML estimation, it then follows that R̂ is the
MLE of R.
It is straightforward to prove that the condition num-

ber of P is less than or equal to the condition number of
P0. Based on that observation we can say that the sig-
nals are less correlated in R than in R0. In particular,
P may be nonsingular even though P0 is singular. This
observation, along with the fact that the performance
of many array processing algorithms deteriorates as the
signal correlation increases, lies at the basis of the belief
that the FB approach should outperform the F-only ap-
proach. This would really be true if one had two sets of
independent data vectors with covariance matrices R0

and, respectively, R. However, only R0 and R̂0 cor-

respond to such a data set, whereas R and R̂ do not.

In fact, the statistical properties of R̂ are quite di�erent

from those of R̂0, and this may very well counterbalance
the desirable property that P in R is better conditioned
than P0 in R0. Consequently, the FB approach may
not lead to any performance enhancement. This discus-
sion provides an intuitive motivation for the superiority
of F-MODE over FB-MODE, which will be shown later
in the paper.
Next, let us introduce the Toeplitz matrix

B� =

2
4
b0 : : : bd 0

. . .
. . .

0 b0 : : : bd

3
5 (m� d)�m; (8)

where the complex-valued coe�cients fbkg are de�ned
through

b0 + b1z + � � �+ bdz
d = bd

Qd
k=1

�
z � ei!k

�
: (9)

Because the polynomial in (9) has all the zeros on the
unit circle, it can be written such that its coe�cients
satisfy the so-called \conjugate symmetry constraint"

bk = bcd�k (for k = 0; 1; : : : ; d): (10)

It follows easily from (8) and (9) that B�A = 0; which,
along with the fact that rank(A) = d and rank(B) =



m � d, implies that R(B) = N (A�): Hereafter, R(�)
and N (�) denote the range, respectively, the null space
associated with the matrix in question.
To end up these notational preparations, let

R =
�
Es|{z}
d

En|{z}
m�d

� ��s 0

0 �2I

��
E�s
E�n

�
(11)

denote the eigenvalue decomposition (EVD) of the ma-
trix R, where �s = diagf�1 : : : �dg: Here, f�kg are
the d largest eigenvalues of R arranged in a decreasing
order: �1 > �2 > � � � > �d. We assume that �k 6= �p
(for k 6= p; k; p = 1; 2; : : : ; d), which is generically true.
Note from (11) that the smallest (m� d) eigenvalues of
R are identical and equal to �2, a fact that follows easily
from (6). The EVD of R0 is similarly de�ned, but with
Es; En, and �s replaced by Es0 ; En0 , and �s0 . We let

R̂ =
�
Ês|{z}
d

Ên|{z}
m�d

� ��̂s 0

0 �̂n

��
Ê�s
Ê�n

�

denote the EVD of R̂, with the eigenvalues arranged in

a decreasing order. The EVD of R̂0 is similarly de�ned,

but with a subscript 0 attached to Ês, etc., to distin-

guish it from the EVD of R̂.

3 BRIEF REVIEW OF F-MODE

The approach of MODE consists of applying the maxi-
mum likelihood (ML) principle to the sample eigenvec-

tors of R̂0 [2]. More precisely, MODE provides the
asymptotically best (in the mean square sense) con-

sistent (ABC) estimate of the parameter vector ! ,

[!1 : : : !d]
T based on the random vector

z = vec(B�Ês0); (12)

where vec denotes column-wise vectorization. The ABC
criterion corresponding to z above can be shown to be

Trf
�
B�B

��1
B�Ês0

~̂�
2

0�̂
�1

s0
Ê�s0Bg; (13)

where Tr denotes the trace operator, ~̂�0 = �̂s0��̂
2I and

where �̂2 is a consistent estimate of the noise power. The
F-MODE estimate of ! is obtained as an asymptotically
valid approximation to the minimizer of (13), in the
following steps [2]:

1. Obtain Ês0 ; �̂s0 ; and
~̂�0 from the EVD of R̂0.

Derive an initial estimate of fbkg by minimizing
the quadratic function

TrfB�Ês0
~̂�
2

0�̂
�1

s0
Ê�s0Bg:

2. Let
�
B̂�B̂

�
be the estimate of

�
B�B

�
made from the

previously obtained estimates of fbkg. Derive re-
�ned estimates of fbkg by minimizing the quadratic
function

Trf
�
B̂�B̂

��1
B�Ês0

~̂�
2

0�̂
�1

s0
Ê�s0Bg:

Possibly repeat this operation once more, using the

latest estimate of fbkg to obtain
�
B̂�B̂

�
. Finally,

derive estimates of f!kg by rooting the polynomialPd
k=0 b̂kz

k (see (9)).

The minimization in steps 1 and 2 above should be con-
ducted under an appropriate constraint on fbkg (to pre-
vent the trivial solution fbk = 0g). Typically, one usesPd

k=0 jbkj
2 = 1: Additionally the fbkg should satisfy

(10).
Asymptotically (as N increases) the F-MODE esti-

mate is Gaussian distributed with mean equal to the
true parameter vector ! and covariance matrix,

CF =
�2

2N

n
Re

�
U�QT

0

�o�1
; (14)

where � denotes the Hadamard product (i.e., element-
wise multiplication),

U = D��?

A
D;

Q0 = P0A
�R�1

0 AP0;

and where

D = [d(!1) : : : d(!d)] ; d(!) =
da(!)

d!

and�?

A
= I�A

�
A�A

��1
A� is the orthogonal projector

onto N (A�). Because (14) is also the CRB matrix for
the estimation problem under consideration, it follows
that F-MODE is asymptotically statistically e�cient [1,
2].

4 DERIVATION OF FB-MODE

Similarly to (12), the FB-MODE is associated with the
ABC estimate derived from

z = vec(B�Ês)

where Ês is obtained from the EVD of the FB sample
covariance matrix. In [6], we show that the ABC crite-
rion corresponding to the FB approach is given by

Trf(B�B)�1B�Ês
~̂�
2

�̂
�1

s Ê�sBg: (15)

Comparing (15) with (13) we see that the FB-MODE
criterion has exactly the same structure as the F-MODE
criterion, with the only di�erence that the former cri-
terion depends on the eigenelements of the FB sample
covariance matrix. Owing to this neat result, the FB-

MODE estimate of ! can be obtained by applying to R̂
the two- (or three-) step algorithm outlined in Section 3.

5 ANALYSIS OF FB-MODE

The asymptotic statistical properties of the FB-MODE
estimates can be derived in a rather standard way by
using a Taylor expansion technique. In [6] it is shown
that, asymptotically (as N increases), the FB-MODE



estimate is Gaussian distributed with mean equal to the
true parameter vector ! and covariance matrix,

CFB =
�2

2N

n
Re

�
U�QT

�o�1
; (16)

Q = PA�R�1AP:

Comparing (16) and (14) we see that the only di�erence
between CFB and CF is that Q0 in CF is replaced by
Q in CFB. If P0 is diagonal then Q = Q0 and hence
CFB = CF. However, if P0 is non-diagonal (i.e., the
signals are correlated) then, in general, Q 6= Q0. By
the CRB inequality, we must have (A � B below means
that the matrix A�B is positive semi-de�nite)

CFB � CF: (17)

As already indicated above, the inequality in (17) is usu-
ally \strict" in the sense that CFB 6= CF. Every time
this happens, the FB-MODE is asymptotically statisti-
cally less e�cient than the F-MODE. To study the dif-
ference (CFB�CF) quantitatively, as well as the extent
to which the asymptotic results derived above hold in
samples of practical lengths, we resort to numerical sim-
ulations (see the next section).

6 NUMERICAL EXAMPLES

Consider a ULA consisting of four omni-directional and
identical sensors separated by half of the carrier's wave-
length. The two signals impinge on the array from
�1 = �7:5� and �2 = 7:5� relative to broadside. These
directions correspond to the spatial (angular) frequen-
cies: !i = � sin(�i) (i = 1; 2): The signal covariance
is

P0 = 10SNR=10
�

1 0:99ei�=4

0:99e�i�=4 1

�
;

where SNR is expressed in decibels (dB).
In the �rst example, SNR=0 dB. The mean-square

errors (MSEs) for F-MODE and FB-MODE are com-
pared for di�erent sample lengths in Figure 1. (Only
the MSE values for �1 are shown; the MSE plot corre-
sponding to �2 is similar.) The sample MSEs are based
on 1000 independent trials. The MSE predicted by the
large sample analysis is also depicted in Figure 1. It can
be seen that the theoretical and simulation results are
similar even for quite small sample lengths. It is clearly
not useful to use FB-MODE in this case, not even for
small samples.
In the second example, the number of samples is �xed

to N = 100 and the SNR is varied. All other param-
eters are as before. The MSEs (computed from 1000
trials) are shown in Figure 2. We see that F-MODE
outperforms FB-MODE for all SNR values.
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Figure 1: Mean square errors for �1 (in degrees2) for
F-MODE (+) and FB-MODE (o) versus the number of
snapshots N . The solid line is the theoretical (asymp-
totic) MSE for F-MODE and the dashed line is the the-
oretical MSE for FB-MODE.
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Figure 2: Mean square errors for �1 (in degrees2) for F-
MODE (+) and FB-MODE (o) versus the SNR. The
solid line is the theoretical (asymptotic) MSE for F-
MODE and the dashed line is the theoretical MSE for
FB-MODE.
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