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ABSTRACT
A self-contained, clear and consistent notation is developed
for five different mathematical models of linear
periodically time-varying (LPTV) filters. Then the various
inter-relationships between the different structures are
derived.

1 INTRODUCTION

Some recent applications of LPTV filters and systems
include bandwidth compression [1], transmultiplexing [2],
speech [3] and image [4] scrambling, communications [5],
and limit-cycle removal in digital filters [6]. More recently,
the theory and application of two-dimensional (2-D) LPTV
systems have also received some attention [4, 6-10].

Five popular representations of LPTV systems (see
Figs 2-5) have emerged [2,3,7,8,11-14]: the LPTV
difference equation, multiple-input/multiple-output,
multiple-input/single-output, single-input/multiple-output,
and the modulator filter.

One of the problems of dealing with any of the above
is the wide range of nomenclatures and descriptions.
Generally all five realisations are not considered together.
In addition, the models sometimes only refer to FIR
structures, or are very general schematics not showing the
derivations or the various inter-relationships.

2 THE VARIOUS EQUIVALENT STRUCTURES

Linear Difference Equation

Consider the following general LPTV filter:
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with < >• •  and [ ]  relating to arithmetic modulo-N1.

Green’s Function

Another description is based upon the following general
expression for a linear time-varying system:
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where h n( , )l  is the Green’s function of the system, and is
the response of the filter at time ‘n’ due to a unit impulse
applied at time ‘ l ’. We can also define:
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where ck ( )l  and r nk ( )  represent, respectively, the system

response at time ‘k’ due to a unit impulse applied ‘ l ’
samples earlier, and the response at time ‘k+n’ due to a
unit impulse applied ‘n’ samples earlier. Importantly,
different nomenclature is now used from previous
publications [2,3,11-14] to provide intuitive understanding.
Here ck ( )l  is the l -th element of the k-th column of

h n( , )′ ′l , and r nk ( )  is the n-th element of the k-th row of

h n( , )′ ′l , with columns and rows zero-referenced from the

main diagonal of h n( , )′ ′l , as shown in Fig.1. Using ck ( )l

and r nk ( )  avoids the nomenclature problems of taking the

z-transform
of h k k( , )− l  and h k n k( , )+ .

                                                       
1 Let X mN n n N= + ≤ ≤ −, 0 1 , where X, m, n and N are all

integers, with N and n non-negative. Then we can define: <X> =
n, and [X] = m for modulo-N arithmetic.



Now for a LPTV system with period N, it is not
difficult to show that the following relationships also hold:

h n h n N N c c r n r nk k N k k N( , ) ( , ), ( ) ( ), ( ) ( )l l l l= + + = =+ + (7)

This result will be used in subsequent analysis. Clearly,
there are now only N unique rows and N unique columns
in h n( , )l , and arithmetic mod-N1 should be appropriately
used in all the previous expressions giving:
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Multiple-Input/Multiple-Output Model

This follows a similar approach as previously used for 2-D
[8]. The objective here is to construct an equivalent linear
time-invariant multiple-input/multiple-output (MIMO)
model for (1). Now (3), which is an equivalent
representation of (1), defines N  LTI linear difference eqns
(one for each of the N different values of k). Taking the z-
transform of each one of these linear difference eqns
results in N  linear simultaneous eqns in the  N  z-
transforms of the sub-sampled outputs of  y(n), i.e.

{ ( )}Y zk k
N

=
−
0
1 . These simultaneous eqns can now be solved

to give the following MIMO model in Fig.2:
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Example

Consider (1), where M M N1 2 2= = = . Taking the z-

transform of (3) for k=0,1 gives
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and solving (12) we get (10), where for H( )z :
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This second-order MIMO model is also shown in Fig.2.

Remaining Structures

Let all subscripts in the following analysis range from 0 to
N-1. From (8), and the decimation theorem2,
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Again from (8) and a generalisation of the decimation
theorem2
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And from (19)
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Now eqns (18) and (19) suggest the multiple-input model
in Fig.3, while eqns (14) and (17) suggest the multiple-
output model in Fig.4.

From eqns (17) and (19) we get the two modulator
filter models ( and implicit bifrequency map [2,13] ) of
Fig’s 5 & 6, with
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From (10) and (11)
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and comparing (19) and (22)
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Now substituting from (23) into (23a) then after some
additional manipulation
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From (23), and using a simple result3
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Similarly from (24)
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Now substituting (27) and (26) into (23) and (24)
respectively gives
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Finally, substituting for R W zk
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Now the inter-relationships between the five popular
models for LPTV systems have been derived and are
contained in the boxed equations. The nomenclature used
is both self-contained, clear and consistent. Note that the
results presented can be obtained in a number of different
ways. For example, the general model of Fig.2 may be
obtained by replacing each LTI Rk(z) in Fig.3 with an
equivalent structure from Fig.4.
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