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ABSTRACT

In this paper, a rank test for detecting the number of
cisoids in noise is presented. The method is based on
Gaussian Lower triangular - Diagonal - Upper triangular
(LDU) decomposition of a Hankel data matrix, and the
method is especially useful for short data records.

1 INTRODUCTION

There is a considerable interest in methods for estimating
the parameters of damped and undamped cisoids from
noise-corrupted measurements. The cisoid-in-noise data
model typically appears in applications such as radar,
communications and nuclear magnetic resonance tomog-
raphy. Most of these methods require the number of sig-
nals, or the order of the system, to be known. An impor-
tant step in obtaining automated estimation procedures
is thus the development of methods for order estimation.

Many classical order estimation schemes, such as the
Final prediction error (FPE) and Akaike's information
criterion (AIC) [1, 2], or improved versions of these meth-
ods, can be di�cult to use because of their computational
complexity and the multivariable search they require. In
brief, these methods evaluate a criterion function, which
depends on the parameters of the signals, for increas-
ing orders of the system. The criterion function is then
inspected, and the number of signals that gives its min-
imum value, or the number at which the decrease in the
criterion function becomes insigni�cant, is chosen as an
estimate of the order of the system.

Another important class of order estimators is formed
by the so called rank test methods . These methods rely
on the fact that a certain Hankel matrix has rank equal
to the system order. Typically, the rank test methods
perform a decomposition (e.g., the eigenvalue decompo-
sition, EVD) of the Hankel matrix to obtain some quan-
tity that (under the assumptions made) has a known dis-
tribution, and statistical methods can then be applied
to estimate the rank of the matrix from the data. Most
of the proposed methods work on a Hankel covariance
matrix (see, e.g., [3, 4] and the references therein).

While the above methods often have an excellent per-
formance in noisy environments, one drawback is that

they require a relatively large number of data points to
provide accurate estimates of the model order.

In some applications the signal-to-noise ratio (SNR)
might be high, but the available amount of data might be
small. One possibility is then to work on a Hankel matrix
formed from the measured signal itself. One such order
estimation scheme using the SVD, is presented in [5].

In this paper we propose an order estimation scheme
for short data records that works on the LDU-
decomposition (see Section 3 below) of the Hankel data
matrix. The LDU-decomposition being a linear proce-
dure, the distribution of the data is preserved, and in the
case of Gaussian noise, a very simple signi�cance test for
the number of signals results.

The outline of the paper is as follows: Section 2 intro-
duces the data model used throughout the paper and Sec-
tion 3 introduces the LDU decomposition. In Section 4
the proposed algorithm is summarized. Some numeri-
cal examples illustrating the performance of the method
are presented in Section 5. Section 6 �nally states the
conclusions.

2 NOTATIONS AND ASSUMPTIONS

Consider the following (possibly damped) sinusoidal sig-
nal:

x̂(t) = x(t) + w(t) (1)

=

rX
k=1

ake
(2�j!k��k)t + w(t) (2)

In (2), the complex number ak determines the initial am-
plitude and phase of the kth signal whereas !k and �k are
its angular frequency and damping factor respectively.
We stack N snapshots of the measured signal x̂(t) in a
(p�m)-dimensional Hankel matrix as

X̂ =

0
BBB@

x̂(1) x̂(2) � � � x̂(m)
x̂(2) x̂(3) � � �
...

. . .

x̂(p) x̂(N)

1
CCCA (3)

= X +W (4)



where m = N � p+ 1 (we chose m � p). The noise w(t)
is assumed to be complex Gaussian, so that vecW �
CN (0;W). It is straightforward to show that

rankX = r; r � min(m; p) (5)

so that the order of the system is given by the rank of
X . A new method for determining the rank of X , given
the noisy measurement X̂ , is outlined below.

3 THE LDU DECOMPOSITION

In this section, the Gaussian Lower triangular - Diago-
nal - Upper triangular (LDU) decomposition of X̂ (de-
�ned in (3)) is presented (the derivations are patterned
from [6]).

As the name suggests, the LDU-decomposition par-
titions the matrix X̂ into a product of three matrices:
L, which is lower triangular, D, which is diagonal, and
U , which is upper triangular. The decomposition is usu-
ally performed by successive Gaussian elimination. Some
kind of pivoting operation is necessary to ensure numer-
ical stability of the decomposition procedure. We shall
see that the test to be developed below requires the piv-
oting to be complete. With complete pivoting we mean
that at each step of the Gaussian elimination the cur-
rent sub-matrix is searched for its largest element (in
absolute magnitude), which is shifted to the top left cor-
ner by column and row interchanges (this is in contrast
to partial pivoting which only shifts the largest element
in the �rst column of the sub-matrix). Pivoting is dis-
cussed, e.g., in [7] and the numerical implementation of
the LDU-decomposition is treated in detail in [8].

LDU-decomposition with complete pivoting of X

yields

PXQ = LDU (6)

where P and Q are permutation matrices corresponding
to the pivoting andD is a diagonal matrix which will have
a certain structure due to the row and column pivoting as
will be explained below. As mentioned before, matrices
L and UT are lower triangular, and they are normalized
to have ones along the diagonals. If the p�m matrix X
has rank r, then the LDU-decomposition with complete
pivoting can be partitioned as

LDU =

0
@L11 0 0
L21 L22 0
L31 L32 Im�p

1
A
0
@D1 0 0

0 0 0
0 0 0

1
A
0
@U11 U12

0 Ip�r
0 0

1
A (7)

The corresponding LDU-decomposition for X̂ is denoted

P̂ X̂Q̂ = L̂D̂Û ; (8)

and is partitioned as

L̂D̂Û =

0
@L̂11 0 0

L̂21 L̂22 0

L̂31 L̂32 Im�p

1
A
0
@D̂1 0 0

0 D̂2 0
0 0 0

1
A
0
@Û11 Û12

0 Û22

0 0

1
A : (9)

In (7) and (9), the row as well as the column partition
are by r, p� r and m� p. An important property of the
complete pivoting is that it ensures that the r�r diagonal
matrix D1 in (7) is nonsingular and that the diagonal of
D contains exactlym�r zeros, placed as indicated in (7).
Also, it follows from (6) that L11, L̂11, U

T
11 and ÛT

11 are
unit lower triangular, and choosing L22 = Ip�r and L32 =
0 ensures that the decomposition (7) is unique [9]. Since
X̂ is assumed to have full column rank, L̂22 as well as
ÛT
22 will be unit lower triangular (but di�erent from their

exact counterparts) so that also the decomposition (9) is
unique.
As the SNR grows to in�nity, the matrix X̂ tends to

X and it can be shown that the roofed quantities in the
sample LDU-decomposition (9) converge in probability
to the true ones, given by (7) (see, e.g., [6]). In other
words,

P̂ X̂Q̂ = L̂D̂Û
p! PXQ = LDU: (10)

Particularly, D̂2
p! 0 and we shall see that under the

null hypothesis,

H0 : rankX = r (11)

we can derive the statistical properties of the p�r vector

d̂2
4
= diag (D̂2) (12)

which will enable us to develop the test for determining
the rank of X . To do this, we need some additional
notation.
Let �i be a (p� r) � (p � r) matrix that has 1 as its

(i; i)-element and zeros elsewhere. Also de�ne

� = (�1 �2 � � ��p�r)
T : (13)

It is easily veri�ed that the (p � r)2 � (p � r) matrix �
satis�es the orthogonality property

�T� = Ip�r (14)

and also that
vec D̂2 = �d̂2 (15)

with d̂2 as de�ned in (12). From (10), we infer that, for
su�ciently high SNR,

P̂ (X̂ �X)Q̂
p! (L̂D̂Û � LDU): (16)

For notational convenience, introduce the matrices

L̂1 =

�
L̂11

L̂21

�
L̂2 =

�
0

L̂22

�
Û1 =

�
Û11 Û12

�
Û2 =

�
0 Û22

� (17)

and similarly de�ne L1, L2, U1 and U2. Then it is easy
to see that under H0

L̂D̂Û � LDU = (L̂1D̂1Û1 + L̂2D̂2Û2 � L1D1U1)

= (L̂1 � L1)D̂1Û1 + L1

�
D̂1 �D1

�
Û1

+L1D1(Û1 � U1) + L̂2D̂2Û2 (18)



and using (10) and (16) we obtain, as the SNR increases,
that

P̂ (X̂ �X)Q̂ = (L̂1 � L1)D̂1Û1 + L̂1(D̂1 �D1)Û1

+L̂1D̂1(Û1 � U1) + L̂2D̂2Û2: (19)

Introduce the matrices Ĥ and K̂ de�ned by

Ĥ =
�
�L̂�122 L̂21L̂

�1
11 L̂�122 0

�
(20)

K̂ =

� �Û�111 Û12Û
�1
22

Û�122

�
(21)

These matrices satisfy the readily veri�ed properties

ĤL̂1 = 0; ĤL̂2 = Ip�r;

Û1K̂ = 0; Û2K̂ = Ip�r:
(22)

so that pre- and postmultiplying equation (19) with Ĥ

and K̂ respectively yields

D̂2 = ĤP̂
p
N(X̂ �X)Q̂K̂ (23)

and by (12) and (14){(15) we have that

d̂2 = �Tvec (D̂2)

= �Tvec (ĤP̂ (X̂ �X)Q̂K̂)

= �T (K̂T Q̂T 
 ĤP̂ )vec (X̂ �X)

= �T (K̂T 
 Ĥ)(Q̂T 
 P̂ )vec (X̂ �X) (24)

Now, from the distribution of vec (X̂ �X) = vec (W ) we
�nally obtain

d̂2 � CN (0;D) (25)

with D being the asymptotic counterpart of

D̂ = �T (K̂T 
Ĥ)(Q̂T 
 P̂ )cW(Q̂
 P̂ T )(K̂
ĤT )� (26)

The result (25) has a clear potential for developing an
algorithm for order estimation. To see this, we �rst in-
troduce a transformation of d̂2 which turns it into a real-
valued quantity. Let

v = (v1R + iv1I � � � vnR + ivnI)
T (27)

be a complex-valued vector. Then de�ne

f(v)
4
= (v1R v1I v2R v2I � � � vnR vnI )

T (28)

Similarly, if A is an (mjn) matrix with (�; �)th element
A�� = a��R+ia��I , introduce the matrix f(A) of dimen-
sion (2mj2n) as

f(A) =

0
B@

~a11 � � � ~a1n
...

...
~am1 ~amn

1
CA (29)

where the block ~a�� is

~a�� =

�
a��R �a��I
a��I a��R

�

Then, de�ning the quantities

�d2 = f(d̂2) (30)

�D = f(D̂) (31)

and using (25), we obtain

�̂
4
= �dT2

�D�1 �d2 � �2(2(p� r)) (32)

i.e., under the null hypothesis (11), the (real-valued)
test quantity �̂ is �2-distributed with 2(p� r) degrees of
freedom.

4 THE ALGORITHM

Summarizing the results of the above derivations leads
to the following rank test for determining the number of
cisoids:

1. Perform the LDU decomposition of the data matrix
X̂ . Set j = 0.

2. Partition the decomposition to obtain the 2(m� j)-
vector �d2, and construct the covariance matrix �D.
{ If �̂ � �2�(2(m � j)), then rankX = j and the
number of signals is r = j.

{ Else, set j = j+1. If j < m, go to the beginning
of Step 2, otherwise the test is terminated.

3. If the test terminates with j = m, then the rank of
X could not be determined andm must be increased
to �nd the system order.

The signi�cance level � is de�ned as

� = prob
�
u > �2�(m)ju � �2(m)

�
: (33)

The parameter � is called the probability of false alarm;
it is the probability of declaring rankX > r when in fact
it holds true that rankX = r. The threshold �2�(m) for
di�erent values of m and � can be read from a table of
the �2 distribution, see, e.g., [10].

5 NUMERICAL EXAMPLES

In this section we present some numerical examples
to illustrate the performance of the proposed detection
scheme. Consider two (i.e., r = 2) undamped exponen-
tials, the parameters of which are

�1 = 0 f1 = 0:42 a1 = 1

�2 = 0 f2 = 0:52 a2 = ej�=4

(see (2)). The noise is assumed to be zero mean, circu-
larly complex white Gaussian noise, i.e.,

Ew(t) = 0; Ew(t)w(s) = 0 all t; s
Ew(t)w�(s) = �2�t;s

(34)

which means that W = �2I (in the simulations we as-
sume �2 to be known). De�ne the signal-to-noise ratio



as SNR = 10 log(1=�2) i.e., the ratio between the power
of each signal and the noise power.

We will assess the performance of the method in terms
of the probability of error, i.e., the percentage of times
that the incorrect order is estimated for a number of runs,
each on independent realizations of the data. In all the
simulations we use 3000 Monte Carlo simulations.

In Figure 1 the (in-)dependency of the proposed algo-
rithm on the number of data points is shown. The prob-
ability of false alarm is chosen to � = 0:01 and m = 6.
As expected, the method performs well even for short
sample lengths for a variety of SNR values (note that for
SNR=15dB, the correct order was always determined).

In Figure 2 we investigate the sensitivity of the method
to the size of the data matrix X̂. We used 25 data points
and again � was set to 0.01. We note that a large m
is not always desirable, but for high SNR, the choice of
m has less impact on the performance of the algorithm.
Note that m > 4 is required to separate the signals. This
is due to the transformation f(�) introduced in (30) .

6 CONCLUSIONS

In this paper, an order estimation scheme for (possibly
damped) cisoids in noise was presented. The advantages
of the method is its simplicity and that it performs well
for short data records and for a variety of medium-to-high
SNR values, as veri�ed by the numerical examples.
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