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ABSTRACT
The direction-finding approach for impinging signals is
one of the most important issues in array processing.  By
exploiting the cyclic statistics and higher-order temporal
properties of communication signals, cyclic higher-order
statistics (CHOS) direction-finding approaches have been
proposed for narrow-band non-Gaussian signals.
However, conventional cumulant-based algorithms
become very complicated and are computationally
intensive when a cumulant higher than the forth-order is
used. In this paper, by utilizing a linear prediction (LP)
model of the sensor outputs, a new cyclic higher-order
method is given to detect the signals of interest (SOI).
The proposed method can not only reduce the
computational load and completely exploit the CHOS
temporal information, but can also correctly estimate the
DOA of desired signals by suppressing undesired signals.
We also show the effectiveness of the proposed method
through simulation results.

1. INTRODUCTION
The direction-finding approach for impinging signals is
one of the most important issues in array processing.
Some types of modulated signals like QPSK and digital
QAM can not be processed adequately by using second
order statistics, which are appropriate only when the
signals are Gaussian [1].  In recent years, some new
signal-selective direction-finding algorithms such as
cyclic MUSIC and ESPRIT have received much attention
in communication systems for their ability to improve
signal detection. These algorithms have led to the
development of the theory of second-order
cyclostationarity of signals. On the other hand, by
exploiting the higher-order temporal properties of
communication signals, many algorithms for direction-
finding (DF) have been proposed for narrow-band non-
Gaussian signals.  However, there is a class of signals
whose order is greater than two originating from, for
example, second-order cyclostationary signals filtered by

channels whose bandwidth is less than their minimum
cycle frequency. Moreover, cyclostationary-based
approaches cannot detect signals which have the same
cycle frequency. In general, dealing with higher-order
cyclic statistics requires a large amount of data. Further,
conventional cumulant-based algorithms become very
complicated and are computationally intensive when a
cumulant higher than the fourth-order is used  [4].
Some studies [1][2][5][6][7] are based on the
fundamental properties of the cyclostationarity concept
and discuss the problem of using cyclic higher-order
statistics (CHOS), where cyclic MUSIC was generalized
by using forth-order cyclic cumulants for one lag τ, to
estimate the direction of arrivals (DOAs) of
cyclostationary signals.  In this paper, by utilizing a
linear prediction (LP) model of the sensor outputs, a new
cyclic higher-order method is given to detect the signals
of interest (SOI).  The proposed method can reduce the
computational load and completely exploit CHOS
temporal information multiple lags τ through the use of
the LP model.  It can also correctly estimate the DOA of
desired signals by exploiting the cyclostationarity of the
signals to suppress undesired signals. The proposed
methods, appropriate for uniform linear arrays, employ
CHOS of the array output and suppress additive Gaussian
noise of unknown spectral content -- even when the noise
shares common cycle frequencies with the non-Gaussian
SOI.  In addition, CHOS are tolerant of non-Gaussian
interferences with cycle frequencies other than those of
the desired signals and allow for the consistent estimation
of the angles of arrival of signal sources whose number
can be greater than the number of sensors.
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Fig. 1 The structure of an uniform linear array with M
sensors in the base station.



2. SIGNAL MODEL AND CYCLIC CUMULANTS
If the uniform linear array consists of M sensors with
separation distance D as shown in Fig.1, then the narrow-
band signal model is given by

 x n s n j f i D c ni k c k i
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where s nk ( )  [ ν i n( ) ] is the k-th source signal [sensor
noise], θ k  is its DOA, P is the number of source signals,
fc  is the carrier frequency, and c is the velocity of

propagation.  In this study, we will work under the
following assumptions on the signal model:
[A1] s nk ( ) ’s are non-Gaussian, m-th order
cyclostationary with a common cycle frequency and
with absolutely summable cumulants ∀m and nonzero
cumulants of order m.
[A2] ν i n( )  in (1) is zero-mean, either stationary or
Gaussian, and independent of the source signals or (non)
Gaussian with different cyclostationarity to the source
signals.
  The above assumptions will be used all the following
properties of cumulants [3]:
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[P3] For the set of random variables, y x x xn1 1 2, , , ,�; @ ,

cum cum cumx y x x y x x x x xn n n1 1 2 1 2 1 2+ = +, , , , , , , , ,� � �; @ ; @ ; @ .

[P4] If any group of the xi ’s are independent of the

remaining xi ’s then cum x x xn1 2 0, , ,�; @ = .

[P5] cum x x xn1 2, , ,�; @ is symmetric in its arguments.

[P6] For Gaussian random variables x x xn1 2, , ,�; @ ,

cum x x xn1 2 0, , ,�; @ =  for n ≥ 3.

By collecting the received signal x ni ( ); @  for i M= 1, ,� ,
then the received signal vector x( )n  can be expressed as
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Most communication signals are not only non-Gaussian
but also exhibit cyclostationarity due to a modulation
with carrier. Further, the corresponding discrete-time
signals obtained by oversampling these continuous time
signals are also cyclostationary. Therefore, a process
{ ( ), , , }x n n= 0 1�  is said to exhibit m-th order

cyclostationarity when its time-varying cumulants, up to
order m, are (almost) periodic functions of time.  The m-
th order cyclic cumulant with cycle frequency α of x( )n
is the Fourier series coefficient of its time-varying
cumulant
C n x n x n x nmx m m( ; , , ) cum{ ( ), ( ), , ( )}(*) (*)τ τ τ τ1 1 1 1� �− −≡ + + (4)

and is given by
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where (*) is either a conjugate manipulation or nothing,
that is (*) is an optional conjugation [3].  With the finite
data and under absolute cumulant summability (i.e.
mixing), the estimate
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is consistent and asymptotically normal.  Specifically for
m= 3 4,  when E n{ ( )}x 0= , we have, for example,
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With finite data, the estimate of the kth-order cyclic
moment is given by
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and sample cyclic kth-order cumulants are estimated via
sample cyclic moments of order< k [11].
For stationary x( )n , the cyclic cumulant is time invariant,
and hence C mmx m( ; , , ) , ,α τ τ α1 1 0 0� − = ∀ ≠ , whereas for
Gaussian (cyclostationary or not) x( )n ,
C mmx m( ; , , ) , ,α τ τ α1 1 0 3� − = ≥ ∀ .  Consequently, higher-
order cyclic statistics can distinguish between stationary /
cyclostationary and  Gaussian / non Gaussian processes.

3. CHOS DOA ESTIMATION EXPLOITING

LINEAR PREDICTION MODEL
Supposing that the received data x nM ( )  is predicted as a
linear combination of the remaining (M −1) sensor
outputs expressed by

x n a x n nM i M i M
i

M

( ) ( ) ( )+ =−
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−
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(9)

where { }ai  are the LP coefficients.  By multiplying (9)
by appropriate delayed versions of the random process
x nM ( )  and taking expectations, it is not difficult to show



that the third- and forth-order cumulants satisfy the
difference equation (9).
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Recall the narrow-band signal model (1) and consider the
third-order and fourth-order cyclic cumulant of the M-th
sensor output, which under assumptions [A1] and [A2]
and properties of cumulant [P1-P6] are respectively
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where Pα  are the number of SOI.  If the cumulants of
the process are known, then by evaluating (10) and (11)
for various lags τ τ τ1 2 3, , , it is possible to obtain linear
equations to solve for coefficients { }ak .  For example,
letting τ τ τ1 2 3 0 1 2 1= = = −, , , ,� L  yields
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or

C a y= (16)
Figure 2 depicts the block diagram for generating the
third-order cyclic cumulants which follow the equation
(14) .  As shown in Fig. 2, the structure is very simple
and can reduce the computational load.
The rank of the cumulant matrix in (14) and (15) is equal
to the number Pα  of SOI with cycle frequency α .

Taking the singular-value decomposition (SVD) into C
gives C U V= ΛΛ H , where U u u= −[ , , ],1 1� M  V v v= −[ , , ]1 1� M ,
and ΛΛ = −diag( , , )λ λ1 1� M . By using the SVD and the
number of Pα , the estimate �a  of the coefficients a  is
obtained by
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After the parameters { }ai  have been estimated their
DOA can be found by searching the positions of the
peaks of the power spectral density given by
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where z j= exp( )ω .  Therefore, to obtain the DOA of the
desired signals, we choose the cycle frequency α  which
corresponds to the desired signals and solve equation (16),
and we search for the positions of the peaks of (18).
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Fig. 2 Block diagram for the proposed methods

(Third order)

4. NUMERICAL EXAMPLES
First of all, we show the effectiveness of the higher-order
cyclic cumulant. Figures 3 and 4 show examples of the
absolute values of second- and forth-order cyclic
cumulants at a varying cycle frequency α  and lag
parameter τ . The signal used in these examples contains
one BPSK signal with α = 0 25. , one AM signal with
α = 0 4. , and Gaussian background noise.  The BPSK
signal is filtered using a raised cosine filter with a 0.5
rolloff factor. The SNRs of the BPSK and AM signals
(with respect to the noise) are 10 dB and 0 dB,
respectively.  The figure of the forth-order cumulant
shows significant improvement of the BPSK signal
detection at cycle frequency α = 0 25. compared to the
second order.
Finally, we present the simulation results that show the
effectiveness of the proposed method.  We considered a
uniform linear array having eight elements with half-
wavelength spacing.  Three signals impinge on the array.
The SOIs are two BPSK signals with 0.25 baud rates
(α=0.25) which arrive from 20o and 50o.  The



interference is an AM signal arriving from –35o (α=0.6).
The length of the sample data is N = 512, and the lag
parameter is L=16. The signal-to-noise ratios (SNR) for
each source is defined as the ratio of the power of each
source to that of the background noise.  In this example,
we set the SNR of the SOI at 0 dB, and the SNR of the
AM signal at 3 dB.  Figure 5 shows the results of the
proposed DOA estimation when we set α = 0 25. , where
conventional cyclic MUSIC and cyclic LS [8] methods
are compared to the proposed method using forth order
cumulant.  These simulations were performed under low
SNR and strong interference conditions, which are
advantageous for our method with respect to cyclic
MUSIC and cyclic LS.

Fig. 3 Absolute value of second order cyclic cumulant

Fig. 4 Absolute value of forth order cyclic cumulant
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 Fig. 5 Simulation results in DOA estimation
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