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ABSTRACT

In this paper, the harmonic retrieval problems in white

Gaussian noise, non-Gaussian impulsive noise and in

presence of threshold observations are addressed using

a Bayesian approach. Bayesian models are proposed

that allow us to de�ne posterior distributions on the

parameter space. All Bayesian inference is then based

on these distributions. Unfortunately, a direct evalua-

tion of these latters and of their features requires eval-

uation of some complicated high-dimensional integrals.

E�cient stochastic algorithms based on Markov chain

Monte Carlo methods are presented to perform Bayesian

computation. In simulation, these algorithms are able

to estimate the unknown parameters in highly degraded

conditions.

1 INTRODUCTION

The harmonic retrieval problem is a fundamental prob-

lem in signal processing. Numerous methods have been

developed to solve this problem. In this paper we fol-

low a Bayesian approach. We address the problem of

Bayesian harmonic retrieval in Gaussian noise and two

important practical extensions of this problem. The �rst

extension considers the case where the observation noise

is not Gaussian but impulsive. Such heavy-tailed noise

arises in many applications in signal processing. The

second extension is the harmonic retrieval problem with

hard-threshold observations, this last problem arises in

radar science.

Bayesian models are proposed that allow us to de-

�ne posterior probability distributions over the space

of possible structures of the signal. Bayesian estima-

tion of harmonic signals in white Gaussian noise has al-

ready been the subject of many recent works [1, 2, 4, 5].

The main problem of this attractive approach is that

the posterior distribution appears highly nonlinear in its

parameters, thus precluding analytical calculations. Ex-

cept in some simple cases, where it is possible to perform

analytical approximations [2], estimation of the poste-

rior distribution requires numerical methods. Determin-

istic numerical methods and classical Monte Carlo meth-

� reversed alphabetical order

ods have already been proposed [4] but they are not

exible and require the careful tuning of many parame-

ters to be e�cient. That is why recently Markov chain

Monte Carlo (MCMC) methods [6] have been proposed

to solve this problem, see [1] and the references therein.

We present here e�cient MCMC algorithms to perform

Bayesian computation for the three problems adressed

and demonstrate their performance using computer sim-

ulations.

2 HARMONIC RETRIEVAL IN GAUSSIAN

NOISE

2.1 Bayesian model

Let y , (y0; y1; : : : ; yT�1)
T
be an observed vector of

T real data samples. y is the superimposition of k,

1 � k < bT=2c, sinusoids corrupted by noise, where the

noise sequence n , (n0; : : : ; nT�1)
T
is zero-mean white

Gaussian noise of variance �2. In a vector-matrix form,

we have

y = D (!) a+ n (1)

where we denote D (!) as the T � 2k matrix de�ned by

D (!) ,
�
dc1 ds1 dc2 � � � dck dsk

�
dcj ,

�
1 cos [!j ] � � � cos [!j (T � 1)]

�T
dsj ,

�
0 sin [!j ] � � � sin [!j (T � 1)]

�T
a ,

�
ac1 as1 � � � � � � ack ask

�
T

! , (!1; : : : ; !k)
T

with acj = aj cos [�j ] and asj = �aj sin [�j ], aj , !j
and �j being respectively the amplitude, the radial fre-

quency and the phase of the jth sinusoid. The pa-

rameters � ,
�
!; a;�2

�
are unknown. To complete the

Bayesian model, we set a prior distribution on �. We as-

sume a vague improper prior distribution for � [1, 2, 5]:

p
�
a;!;�2

�
/ I
 (!) =�

2 (2)

where 
 ,
n
! 2 (0; �)

k
; 0 � !1 < !2 < : : : < !k < �

o
.

/ means \proportional to" and IA (�) is the indicator

function of the set A.



2.2 Estimation objectives
Bayesian inference about � is based on the posterior dis-

tribution p (�jy) obtained from Bayes' theorem. Our

aim is to estimate this joint distribution from which,

by standard probability marginalisation and transfor-

mation techniques, one can obtain all posterior features

of interest including the marginal distributions, poste-

rior modes or conditional expectations. To develop an

e�cient algorithm, it is worth noticing that p (!jy) can
be evaluated analytically up to a normalizing constant.

Indeed, by straightforward calculations [1], we obtain:

p (!jy) / jM (!)j
1

2

�
yTP (!)y

��T�2k

2
I
 (!) (3)

with

M�1 (!) = DT (!)D (!)

m (!) = M (!)DT (!)y (4)

P (!) = IT �D (!)M (!)D
T
(!)

2.3 Bayesian computation

Denoting !
(i)
�j ,

�
!
(i)
1
; :::; !

(i)
j�1; !

(i�1)
j+1 ; :::; !

(i�1)
k

�
, the

iterative MCMC algorithm proceeds as follows. The pa-

rameters are randomly initialized
�
a(0);!(0); �2(0)

	
at

iteration i = 0, then the algorithm proceeds as follows

at iteration i, i � 1.

For j = 1; :::; k

� Sample !j according to a mixture of two Metropolis-

Hastings (MH) kernels of invariant distribution

p
�
!j jy;!

(i)
�j

�
, see 2.3.1.

End For.

� Optional step. Sample
�
a(i); �2(i)

�
�

p
�
a; �2

��y;!(i)
�
.

These steps are detailed in the following subsections. In

what follows, in order to simplify notation, we drop the

superscript �(i) from all variables at iteration i.

2.3.1 Sampling the frequencies
We sample the frequencies one-at-a-time using MH steps

[6]. The target distribution is the so-called full condi-

tional distribution of a frequency,

p
�
!j jy;!�j

�
/ jM (!)j

1

2

�
yTP (!)y

��T�2k
2

I
 (!)

(5)
With probability 0 < � < 1, we perform a MH step with

proposal distribution q1
�
!0j
��!j� independent of the cur-

rent state !j :

q1
�
!0j
��!j� /

Tp�1X
l=0

plI[l�=Tp;(l+1)�=Tp)

�
!
0

j

�
(6)

where pl is the value of the squared modulus of the

FFT of the observations y at frequency l�=Tp. This

proposal distribution allows the Markov chain to reach

quickly the regions of interest of the posterior distribu-

tion. With probability 1 � �, we perform a MH step

with proposal distribution q2
�
!0j
��!j� satisfying

!0j
��!j � N

�
!j ; �

2

RW

�
(7)

N (m;�) being a normal distribution of mean m and

covariance �. This random walk is introduced to per-

form a local exploration of the posterior distribution. In

both cases !0j is accepted with the probability

�
yTP (!)y

yTP (!0)y

�T�2k

2 jM (!0)j 1/2 qi (!j!0)

jM (!)j 1/2 qi (!0j!)
(8)

for i = 1; 2 where !0 ,
�
!1; :::; !j�1; !

0

j ; !j+1; :::; !k
�
.

2.3.2 Sampling the nuisance parameters
If one is not interested in estimating

�
a; �2

�
, then it is

not necessary to sample these parameters contrary to [5].

Otherwise, we obtain by straightforward calculations:

�2
�� (y;!) � IG

�
T � 2k

2
;
yTP (!)y

2

�
(9)

aj
�
y;!; �2

�
� N (m (!) ;M (!)) (10)

IG denoting the inverse Gamma distribution.

This algorithm is much more e�cient practically and

theoretically than the one proposed in [5]. Theoretically,

it converges uniformally geometrically towards the pos-

terior distribution [1] and in practice we observe a quick

convergence of the simulated Markov chain.

3 HARMONIC RETRIEVAL IN

NON-GAUSSIAN NOISE

We extend here this algorithm to non-Gaussian impul-

sive noise modeled by a mixture of Gaussians.

3.1 Bayesian model and Estimation objectives

The model is similar to the one developed in Section

2 except that the noise sequence n , (n0; : : : ; nT�1)
T

is now i.i.d. modeled as a mixture of Gaussians, i.e.

ntj�2t � N
�
0; �2t

�
where �2t is itself a random variable.

Finite mixture: The noise is here modeled as a two-

component Gaussian mixture, i.e.

�2t
�� ��2; �2; �� � ���2 (d�) + (1� �) ��2�2 (d�) (11)

where �2 < 1 and �u (d�) denotes the delta-Dirac mea-

sure located in u. With probability 1 � �, ntj�2t �
N
�
0; �2�2

�
and otherwise ntj�2t � N

�
0; �2

�
. This last

component allows to model impulsive noise. It is of

interest to introduce the unobserved missing data set

� , (�0; : : : ; �T�1)
T
which take values in fl1; l2g

T
and

such that Pr
�
�t = l1j�; �2

�
= � and

ntj
�
�2; �2; �t = l1

�
� N

�
0; �2

�
ntj

�
�2; �2; �t = l2

�
� N

�
0; �2�2

�
(12)

We assume that p
�
�;�2; �;

�
= p (�) p

�
�2; �

�
where �2

and � are assumed distributed according to uniform

prior distributions �2 � U(0;1), � � U(0;1).
Continuous mixture: The modeling by a �nite mix-

ture can be restrictive. In particular, it does not allow to

model Cauchy and Laplacian noises. One can use a con-

tinuous mixture of Gaussians to solve this problem [1].

Because of space limitations, we only present here the



algorithm to compute the posterior distribution in the

case of �nite mixture distributions. More precisely, we

derive an algorithm to estimate p (�; �jy) as, similarly

to (3), one can evaluate analytically up to a normalizing

constant p (!jy; �).

3.2 Bayesian computation

At iteration i � 1, the MCMC algorithm proceeds as

follows.

� For j = 1; :::; k

� Sample !j according to a mixture of MH kernels of

invariant distribution p
�
!j jy; �

(i�1);!
(i)
�j

�
.

End For.
For t = 0; :::; T � 1

� Sample �
(i)
t �p

�
�tjy; �

(i)
�t;!

(i); �2(i�1); �(i�1)
�
.

End For.

� Sample
�
a(i); �2(i)

�
�p

�
a; �2

��y; �(i);!(i); �2(i�1)
�
.

� Sample�
�2(i); �(i)

�
�p

�
�2; �

��y; �(i);!(i); a(i); �2(i)
�
.

3.2.1 Sampling the frequencies and the missing data

To sample the frequencies, we adopt a similar strategy to

the one presented in 2.3.1 except that the target distri-

bution is now p
�
!j jy; �

(i�1);!
(i)
�j

�
and that q1

�
!0j
��!j�

is based at iteration i on the FFT of the observations

y weighted with the current inverse covariance matrix

�
�1

of the noise determined by �(i�1), � being de-

�ned in 3.2.2. Sampling the missing data is easy as

p
�
�tjy; ��t;!; �

2; �
�
is a discrete probability distribu-

tion that can be evaluated.

3.2.2 Sampling the nuisance parameters

�2
�� �y; �;!; �2� � IG

�
T � 2k

2
;
yTP (!)y

2

�
(13)

aj
�
y; �;!; �2; �2

�
� N

�
m (!) ;M (!)

�
(14)

with

M
�1

(!) = DT (!)�
�1

D (!)

m (!) = M (!)DT (!)�
�1

y (15)

P (!) = IT �D (!)M (!)DT (!)

� being a T � T diagonal matrix with �i;i =

If�i�1=l1g+�
2
If�i�1=l2g.

3.2.3 Sampling the mixture parameters

Denoting n1 =
PT�1

t=0 In
�
(i)

t =l1

o and n2 = T � n1:

�j �(i) � Be (n1 + 1; n2 + 1) (16)

Be being the Beta distribution. For n2 � 2

�2
�� �y; �;!; a; �2� � IG

�
n2 � 2

2
;


2

�
I(0;1)(�) (17)

For 0 � n2 � 1, e�cient rejection methods can be used.

4 HARMONIC RETRIEVAL WITH

THRESHOLD DATA

4.1 Signal model and Estimation objectives
The statistical model for y =(y0; y1; : : : ; yT�1)

T
is sim-

ilar to the one in Section 2, i.e. k sinusoids in white

Gaussian noise. But in this case, we do not observe y

but z , (z0; z1; : : : ; zT�1)
T
, where z is a threshold ver-

sion of y, i.e.

zj = ymax if yj � ymax

zj = yj if ymin � yj � ymax

zj = ymin if yj � ymin

(18)

ymin and ymax (ymin < ymax) being known thresholds.

The parameters of the sinusoids and the variance of the

noise are unknown. Given the data set z, our objective

is to estimate these parameters, that is � ,
�
aT;!T; �2

�T
where p (�) / I
(!)/�

2.

Our aim is to estimate the posterior distribution

p (�j z) and its features. More precisely, we derive an

algorithm to estimate p (�;yj z) as, similarly to (3), one

can evaluate analytically up to a normalizing constant

p (!jy; z) = p (!jy).

4.2 Bayesian computation

At iteration i � 1, the MCMC algorithm proceeds as

follows.

� Sample y(i) � p
�
yj z; a(i�1);!(i�1); �2(i�1)

�
.

For j = 1; :::; k

� Sample !j according to a mixture of two MH kernels

of invariant distribution p
�
!j jy(i);!

(i)
�j

�
.

End For.

� Sample
�
a(i); �2(i)

�
according to p

�
a; �2

��y(i);!(i)
�
.

4.2.1 Sampling the missing data y

The missing data y are conditionally statistically inde-

pendent and we easily obtain:

ytj
�
zt; a;!; �

2
�

� �zt (dyt) if (ymin � zt � ymax) (19)

ytj
�
zt; a;!; �

2
�

� N
�
yt; �

2
�
I(�1;ymin)

(�) if zt < ymin

ytj
�
zt; a;!; �

2
�

� N
�
yt; �

2
�
I(ymax;+1) (�) if zt > ymax

where yt = eTt+1D (!) a, et+1 being a T -dimensional

vector with all components equal to 0 except the com-

ponent t which is equal to 1.

4.2.2 Sampling the frequencies and the nuisance pa-

rameters

To sample the frequencies we adopt the same strategy

as in 2.3.1 except that q1
�
!0j
��!j� is based at iteration

i on the FFT of the simulated observations y(i). To

sample the nuisance parameters, the method is similar

to the one described in 2.3.2. The main di�erence is

that, even if one is not interested in estimating
�
a; �2

�
,

this simulation step is necessary to sample the missing

data y.



5 SIMULATIONS

These algorithms require the speci�cation of parameters

that have no inuence on the posterior distribution but

only on the speed of convergence of the algorithm. We

set � = 0:2, Tp = T and �RW = 1= (5T ). These param-

eters have been determined in a rather heuristic way.

They are the �rst values we tried and they provide the

Markov chain with very satisfactory properties. The fol-

lowing parameters have been selected for the sinusoids:

T = 128, k = 2. We de�ne Ei , a2ci + a2si . E1 = 20,

E2 = 18, � arctan (as1/ ac1) = 0, � arctan (as2/ ac2) =

�/ 4, f1 , !1/ 2� = 0:2 and f2 , !2/ 2� = 0:3. First

a signal in non-Gaussian impulsive noise has been sim-

ulated with � = 5:6, � = 0:02 and �2 = 0:1. In Fig.

1, this signal is displayed as well as the posterior distri-

bution of the missing data �. In Fig. 2, p (f1jy) and
p (f2jy) are given. Then a threshold signal has been

simulated ymax = �ymin = 3 and � = 5:6. In Fig. 3, y

and z are displayed. In Fig. 4, p (f1j z) and p (f2j z) are
presented. Other results are presented in [1].

6 CONCLUSION

In this paper, the harmonic retrieval problems in Gaus-

sian noise, non-Gaussian impulsive noise and with

threshold observations have been treated. These com-

plex statistical problems have been addressed in a

Bayesian framework. Bayesian models have been pro-

posed and e�cient Markov chain Monte Carlo methods

have been proposed to perform Bayesian computation.

In simulations, these algorithms allow us to estimate in

a satisfactory way the unknown parameters in di�cult

conditions. Extensions to continuous mixtures and col-

ored noise cases are presented in [1].
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Figure 1: Top: observations y (threshold for presenta-

tion). Bottom: Missing data �t = l1 set to an arbitrary

height 0:5 and Pr ( �t = l1jy).
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Figure 2: Marginal posterior distributions of the fre-

quencies p (f1jy) and p (f2jy).
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Figure 3: y and threshold obervations z.
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Figure 4: Marginal posterior distributions of the fre-

quencies p (f1j z) and p (f2j z).


