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ABSTRACT

In this paper, we address the problems of ML (Maximum

Likelihood) parameter estimation and model order selec-

tion for harmonic signals using classical criteria. Solving

these problems requires the maximization of complex

multimodal functions. These optimization problems are

shown as being equivalent to the estimation of joint and

marginal maximum a posteriori (MAP) estimates un-

der given Bayesian models. E�cient stochastic algo-

rithms based on non-homogeneous Markov chain Monte

Carlo methods are presented to solve these problems and

their convergence is established. Computer simulations

demonstrate the e�ciency of these algorithms.

1 INTRODUCTION

The harmonic retrieval problem is a fundamental prob-

lem in signal processing. Under the assumption of an ad-

ditive white Gaussian noise, it has already often be ad-

dressed in the literature. When the number of harmon-

ics is known, the Maximum Likelihood (ML) estimate

is the most popular estimate [5, 8, 10]. Unfortunately,

obtaining this estimate involves the optimization of a

typically complex multimodal function and this problem

admits no analytical solution. Numerous methods have

been proposed to solve these problems. They are mainly

deterministic and thus very sensitive to initialization.

As a consequence, they are not reliable as soon as the

signal to noise ratio is weak [5, 8, 10]. Standard stochas-

tic optimization algorithms have also already been ap-

plied but they do not use the statistical structure of

the model and are not very e�cient in practice [6, 7].

When the number of harmonics is unknown, the de-

tection problem, i.e. the selection of the model order,

is often addressed using classical criteria such as AIC

(Akaike Information Criterion), BIC (Bayesian Informa-

tion Criterion) or MDL (Minimum Description Length).

These criteria require the evaluation of the ML estimate

for each possible model order. The aim of this article is

to present e�cient stochastic algorithms to solve these

optimization problems.

�Alphabetical order

The problem of harmonic retrieval is �rst addressed

in a Bayesian framework. We show that obtaining

the ML estimate and estimating the model order us-

ing classical information criteria is equivalent to obtain-

ing some marginal and joint MAP (Maximum a Pos-

teriori) estimates for given Bayesian models. Then we

develop e�cient stochastic algorithms to obtain these

estimates. When the model order is �xed, stochastic

optimization to obtain the ML estimate is performed us-

ing a stochastic annealing version of an e�cient MCMC

(Markov chain Monte Carlo) sampler, see [9] for an

introduction to MCMC algorithms. To estimate the

model order based on classical information criteria, we

develop a stochastic annealing version of a reversible

jump MCMC sampler [4]. Su�cient conditions to en-

sure convergence towards the set of global maxima of

the functions to optimize are established using general

state-space Markov chain theory. The e�ciency of these

algorithms is demonstrated via computer simulations.

2 ESTIMATION OBJECTIVES AND

BAYESIAN MODELS

2.1 Model

Let y , (y0; y1; : : : ; yT�1)
T
be an observed vector of T

real data samples. The elements of ymay be represented

by di�erent modelsMk corresponding either to samples

of noise only or to the superimposition of k sinusoids

corrupted by noise:

M0 : yt = n0t k = 0

Mk : yt =
Pk

j=1 aj;k cos [!j;kt+ �j;k ] + nkt k � 1

where !j1;k 6= !j2;k for j1 6= j2, aj;k, !j;k, �j being

respectively the amplitude, the radial frequency and the

phase of the jth sinusoid for the model with k sinusoids.

The noise sequence nk ,
�
nk0 ; : : : ; n

k
T�1

�T
is assumed

zero-mean white Gaussian of variance �2k . In a vector-

matrix form, we have

y = D (!k) ak + nk (1)

We denote D (!k) the T � 2k matrix de�ned by

D (!k) ,
�
dc1;k ds1;k dc2;k � � � dck;k dsk;k

�



dcj;k ,
�
1 cos [!j;k] � � � cos [!j;k (T � 1)]

�T
dsj;k ,

�
0 sin [!j;k] � � � sin [!j;k (T � 1)]

�T
ak ,

�
ac1;k as1;k � � � � � � ack;k ask;k

�T
!k , (!1;k; : : : ; !k;k)

T

with acj = aj cos [�j ] and asj = �aj sin [�j ].

2.2 Estimation objectives
2.2.1 Fixed model order

When the model order k is known, we want to obtain the

ML estimate c!k of the frequencies !k. This is equiva-

lent to minimize the following function [8]:

c!k =argmin
!k2
k

yTP (!k)y (2)

where 
k ,

n
!k 2 (0; �)

k
o
and

P (!k) , IT �D (!k)
�
DT (!k)D (!k)

�
�1
DT (!k) (3)

2.2.2 Unknown model order

When the model order k is unknown, we want to select it

according to a classical criterion such as AIC, BIC, MDL

or the approximated Bayes factor DMAP introduced in

[2]. All these criteria are of the following form:
T

2
ln
�
yTP (!k)y

�
+ ck (4)

The associated values of c are given in the following

table:

Criterion AIC BIC MDL DMAP

Value of c 3 1
2
ln (T ) 3

2
ln (T ) 5

2
ln (T )

The model order is then selected by minimizing (4) over

k = 0; : : : ; kmax and !k 2 
k, kmax being the maximum

possible model order.

We show now that obtaining these estimates is equiv-

alent to obtaining MAP estimates for given Bayesian

models.

2.3 Bayesian models
We underline here that the following Bayesian models

are de�ned in an adhoc way so that the so-built posterior

distributions admit marginal and joint MAP estimates

matching the ML estimate and classical model order se-

lection criteria.

2.3.1 Fixed model order

The parameters
�
!k; ak;�

2
k

�
are unknown. To de�ne a

Bayesian model, it is necessary to set a prior distribution

on
�
!k; ak;�

2
k

�
. We set the following improper prior

distribution:

p
�
!k; ak;�

2
k

�
/
��DT (!k)D (!k)

�� 12 I
k
(!k) =�

2
k (5)

where 
k ,

n
!k 2 (0; �)

k
o
. /means \proportional to"

and IA (�) is the indicator function of the set A. Under

such a prior distribution, one obtains

p (!kjy) /
�
yTP (!k)y

�
�

T�2k
2

I
k
(!k) (6)

Thus under this Bayesian model the marginal MAP es-

timate of the frequencies !k and the ML estimate are

equal.

2.3.2 Unknown model order

The parameters
�
k;!k; ak;�

2
k

�
are unknown. We set a

prior distribution on
�
k;!k; ak;�

2
k

�
. p

�
k;!k; ak;�

2
k

�
is

assumed proportional to

1

�2k j2��
2
k�kj

1=2
exp

�
�
aTk�

�1
k ak

2�2k

�
I
k

(!k)

�k
(7)

where ��1k = ��2DT (!k)D (!k). By integrating out

the nuisance parameters
�
ak;�

2
k

�
, we obtain

p (k;!k) /
�
yTP (!k)y

�
�

T
2
��
�2 + 1

�
�
�
�k

(8)

If we select �2 such that
��
�2 + 1

�
�
�
�k

= exp (�ck)

then obtaining the joint MAP estimate (k;!k) of this

posterior distribution is equivalent to the minimization

of the criterion (4).

We now propose some e�cient algorithms to obtain

the marginal and joint MAP estimates.

3 STOCHASTIC OPTIMIZATION FOR ML

ESTIMATION

3.1 Algorithm
Let f
i; i 2 Ng be a given positive increasing sequence

of numbers, then our optimization method simulates a

non homogeneous Markov chain
n
!
(i)
k ; i 2 N

o
using the

following algorithm.

Stochastic optimization for ML estimation

1. Initialisation: randomly set !
(0)

k on 
k and i = 1.

2. Iteration i, i � 1.

� Sample !�k according to a reversible uniformally geo-

metrically ergodic kernel K
�
!
(i�1)
k ; d!�k

�
admitting

p (!kjy) as invariant distribution.

� Evaluate �i

�
!
(i�1)
k ;!�k

�
given by

min

8><
>:1;

0
@ p (!�kjy)

p
�
!
(i�1)
k

���y�
1
A


i�1
9>=
>; (9)

� Simulate u � U[0;1]. If u < �
�
!
(i�1)
k ;!�k

�
then

!
(i)
k = !

�

k otherwise !
(i)
k = !

(i�1)
k .

3. Set i i+ 1 and go to step 2.

These di�erent steps are detailed in the following sub-

section.

3.2 Implementation issues
To implement this algorithm, one must be able to eval-

uate �i

�
!
(i�1)
k ;!�k

�
. It can be easily done using (6). It

is necessary to de�ne a reversible uniformally geomet-

rically ergodic kernel K
�
!
(i)

k ; d!�k

�
admitting p (!kjy)

as invariant distribution [9]. There are a huge num-

ber of possibilities. We propose to use the transition

kernel described in ([3], 2.3.1), that is we sample the

frequencies one-at-a-time using a mixture of MH steps

of invariant distribution p
�
!j;kjy;!

�

�j;k

�
[9]. It is eas-

ily seen that the so-built transition kernel is uniformally

geometrically ergodic and reversible.



3.3 Convergence issues
We have obtained the following convergence result.

Theorem 1 Under weak assumptions [1], it exists

C;� > 0 such that for 
i = C ln (i+ �) then the proba-

bility distribution of !
(i)
k denoted p(i) (!k) satis�es

lim
i!+1




p(i) (!k)� p
i (!kjy)




TV

= 0

(k�kTV being the total variation norm [9]) where

p
i (!kjy) / [p (!kjy)]

i is a probability distribu-

tion that concentrates on the set of global maxima of

p (!kjy) as i! +1.

4 STOCHASTIC OPTIMIZATION FOR

MODEL ORDER SELECTION

4.1 Algorithm
Let f
i; i 2 Ng be a given positive increasing sequence

of numbers, then our method simulates a non homo-

geneous Markov chain
n�

k(i);!
(i)

k(i)

�
; i 2 N

o
using the

following algorithm.

Stochastic Optimization for Model Order Selection

1. Initialisation : set randomly
�
k(0);!

(0)

k(0)

�
on

f0; : : : ; kmaxg �
k(0) and i = 1.

2. Iteration i

� Sample k� and !� using a reversible uniformally geo-

metrically ergodic kernel K
�
!
(i�1)
k ; k(i�1); d!�k� ; k

�

�
admitting p (!k; kjy) as invariant distribution.

� Evaluate �i

��
k(i�1);!

(i�1)

k(i�1)

�
; (k�;!�k�)

�
given by

min

8><
>:1;

0
@ p (!�k� ; k

�jy)

p
�
!
(i�1)

k(i�1) ; k
(i�1)

���y�
1
A


i�1
9>=
>; (10)

� Sample u � U[0;1]. If u < �i
�
!
(i�1); k(i�1);!�; k�

�
then

�
k(i);!

(i)

k(i)

�
= (k�;!�k�) otherwise�

k(i);!
(i)

k(i)

�
=
�
k(i�1);!

(i�1)

k(i�1)

�
.

3. Set i i+ 1 and go to step 2.

These di�erent steps are detailed in the following sub-

sections.

4.2 Implementation issues
To implement this algorithm, one must be able to eval-

uate �i

��
k(i�1);!

(i�1)

k(i�1)

�
; (k�;!�k�)

�
. It is done using

(8). We now propose a reversible uniformally geometri-

cally ergodic kernel K
��

k(i�1);!
(i�1)

k(i�1)

�
; k�; d!�k�

�
ad-

mitting p (!k; kjy) as invariant distribution. Note that

to be ergodic this transition kernel must involve moves

between subspaces of di�erent dimensions as dim (!k) 6=

dim (!k0) for k 6= k0. This is not possible using classical

MCMC methods and we need to use a reversible jump

MCMC method, a general methodology that has been

recently introduced by Green [4]. We propose here to

use a mixture that consists of the transition kernel used

previously and a pair of reversible birth/death moves.

Assume that there are k(i�1) sinusoids, then with prob-

ability bk(i�1) we perform the following move.

Birth move

� Select a new frequency !0 uniformly in (0; �) and set

!
0

k(i�1)+1
=
�
!
(i�1)

k(i�1) ; !
0

�
.

� Evaluate �birth = min frbirth; 1g with

rbirth =

0
@ yTP

�
!
(i�1)

k(i�1)

�
y

yTP
�
!
0

k(i�1)+1

�
y

1
A

T
2 �

1 + �2
�
�1

�
k(i�1) + 1

�

� Sample u � U[0;1]. If u � �birth then

(!�k� ; k
�) =

�
!
0

k(i�1)+1
; k(i�1) + 1

�
otherwise

(!�k� ; k
�) =

�
!
(i�1)
k ; k(i�1)

�
.

Now assume that there are k(i�1) � 1 sinusoids, then

with probability dk(i�1) we perform the following re-

versible move, the details can be found in [1].

Death move

� Select uniformly among the k(i�1) existing frequen-

cies the one to kill, say !0 and set !0
k(i�1)

�1
=

!
(i�1)

k(i�1)n f!
0g.

� Evaluate �death = min frdeath; 1g with

rdeath =

0
@y

TP
�
!
0

k(i�1)
�1

�
y

yTP
�
!
(i�1)

k(i�1)

�
y

1
A

T
2

k(i�1)
�
1 + �2

�

� Sample u � U[0;1]. If u � �death then

(!�k� ; k
�) =

�
!
0

k(i�1)
�1
; k(i�1) � 1

�
otherwise

(!�k� ; k
�) =

�
!
(i�1)
k ; k(i�1)

�
.

4.3 Convergence issues
We underline that the proposed algorithm performs

global optimization on an union of subspaces of di�erent

dimension and naturally focus on those that are likely

according to the criterion. We are not aware of simi-

lar results in the literature. The following convergence

result has been established for this algorithm.

Theorem 2 Under weak assumptions [1], it exists

C;� > 0 such that for 
i = C ln (i+ �) then the prob-

ability distribution of
�
k(i);!

(i)

k(i)

�
denoted p(i) (!k; k)

satis�es

lim
i!+1




p(i) (!k; k)� p
i (!k; kjy)




TV

= 0

where p
i (!k; kjy) / [p (!k; kjy)]

i is a probability

distribution that concentrates on the set of global max-

ima of p (!k; kjy) as i! +1.



5 SIMULATIONS

The following parameters have been selected for the si-

nusoids: T = 64, k = 3. We de�ne Ei , a2ci + a2si .

E1 = E3 = 20, E2 = 6:32,� arctan(as1/ac1) =

0, � arctan (as2/ac2) = �/ 4, � arctan (as3/ac3) =

�/ 3,!1/ 2� = 0:2, !2/ 2� = 0:2 + 1/T and!3/ 2� =

0:2 + 2/T . The SNR is de�ned as 10 log10E1=
�
2�2

�
.

Theoretically, the algorithms require a so-called loga-

rithmic cooling schedule 
i and an in�nite number of

iterations to converge. This sequence goes to +1 to

slowly to be used practically. We run here the al-

gorithms for 5000 iterations and select a linear grow-

ing cooling schedule 
i = A + Bi where 
0 = 1 and


5000 = 102.

To test the ML procedure, we simulated 100 realisa-

tions of a noisy signal with a SNR ranging from �1dB

to 3dB. In Tab. 1, we present the average mean values

m (f1) and standard deviations � (fi) of the obtained

estimates.

SNR m (f1) =� (f1) m (f2) =� (f2) m (f3) =� (f3)

-1 0:193=0:027 0:216=0:009 0:247=0:046

0 0:194=0:023 0:215=0:010 0:243=0:038

1 0:195=0:020 0:214=0:006 0:236=0:022

2 0:199=0:002 0:216=0:005 0:235=0:021

3 0:200=0:001 0:215=0:003 0:233=0:011

Table 1

In all simulations, we found that the likelihood value

of the true parameters is weaker than the one of the ob-

tained estimate. If it does not prove that our algorithm

converges towards a global maximum, it shows that it

is very e�cient in practice.

To test the model order selection procedure, we simu-

lated 100 realisations of a noisy signal with a SNR rang-

ing from 0dB to 3dB. The results are displayed in Tab.

2.

Criterion SNR k � 1 k = 2 k = 3 k � 4

MDL 0db 0 39 43 18

1db 0 24 53 23

2db 0 13 59 28

3db 0 6 63 31

DMAP 0db 1 92 7 0

1db 0 72 28 0

2db 0 80 20 0

3db 0 51 49 0

Table 2

The results for other criteria are presented in [1].

We underline that in both cases these algorithms were

intialized randomly. Contrary to classical deterministic

methods, they do not appear to be sensitive to initial-

ization and are very reliable, the cost to pay is that they

are much more computationally demanding.

6 CONCLUSION

In this paper, e�cient stochastic optimization algo-

rithms have been proposed to perform ML estimation

and model order selection for harmonic signals. These

algorithms are based on non homogeneous versions of

Markov chain Monte Carlo methods. Su�cient con-

ditions to ensure convergence of these algorithms to-

wards the set of global maxima have been established.

Their practical e�ciency has been demonstrated via

computer simulations. These algorithms outperform

classical methods as they are not sensitive to initial-

ization and give reliable estimates even in di�cult cases

where the other methods fail.
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