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Abstract

This paper deals with the problem of Blind Source Sep-

aration (BSS). BSS algorithms typically require that

observed data are prewhitened. The data are here as-

sumed to be contaminated by highly deviating samples.

Hence, covariance matrix used for whitening and deter-

mining the number of signals is estimated unreliably.

We propose a method where data are �rst whitened in

a robust manner. Sources are then separated using an

iterative least squares algorithm. The proposed method

is compared to a method based on sample estimates and

the inuence of outliers is analysed.

1. INTRODUCTION

Blind source separation has important applications, e.g.,
in speech and array signal processing. In BSS, a col-
lection of observed linear combinations (mixtures) of
source signals are processed in order to �nd the un-
observable sources. Most separation techniques make
strict assumptions on the number of sources and mix-
tures as well as statistics of the signal. Highly deviating
observations, i.e. outliers, may make these assump-
tions inaccurate: they may make the observed density
appear asymmetric about the mean, inate the vari-
ances, change the correlation structure as well as add
new insigni�cant signal components to the data.

Commonly BSS methods require prewhitening that
de-correlates and normalizes the observed data. Whiten-
ing is typically performed based on eigenanalysis of
sample covariance matrix. Outliers cause error by at-
tracting the mean towards them and perturb the eigen-
values and eigenvectors signi�cantly. This also has im-
plications for information theoretical criteria such as
MDL (see [7]) that are used in estimating the number
of signals.

This paper is organized as follows. The BSS prob-
lem is de�ned and a method for source separation is
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presented in section 2. The problems of prewhitening
in the face of noise is addressed as well. In section 3,
examples and quantitative results on whitening, esti-
mating the number of signals and separating sources in
"-contaminated additive Gaussian noise are given.

2. BLIND SOURCE SEPARATION

BSS has been under busy investigation both in signal
processing and in neural network communities (see e.g.,
[2, 5, 3, 1]). The unobservable sources and the observed
mixtures are related by

xk = Ask + vk (1)

where A is an n�m matrix of unknown constant mix-
ing coe�cients, n � m, s is a column vector ofm source
signals, x is a column vector of n mixtures, v is addi-
tive noise vector and k is time index. The matrix A is
assumed to be of full rank and sources are typically as-
sumed to be zero mean and stationary. Blindness refers
to the fact that no prior information about the mixing
coe�cients is available. All the sources are commonly
assumed to have either positive or negative kurtosis.
One of the sources may be Gaussian (zero kurtosis) if
the noise are non-Gaussian and if the noise are Gaus-
sian none of the sources may be Gaussian.

The separation task at hand is to estimate a sep-
arating matrix H so that the original sources are re-
covered. Observed x are typically whitened prior to
separation. Whitening allows for solving the separa-
tion problem easier because uncorrelated components
with variance �2 = 1 are used as an input and if n = m,
separating matrix will be orthogonal (H�1 = HT ).

An estimate y of unknown sources s is given by

ŝ = y = ĤTx: (2)

The estimate can be obtained only up to a permuta-
tion of s, i.e., the order of the sources may change. If
n > m, the number of source signals may be estimated



using criteria such as the MDL (see [7]). The data are
�rst whitened and the number of signals is estimated
based on robust covariance estimate. In this paper, the
separation is done by employing a least squares algo-
rithm.

2.1. Covariance estimation and whitening

Sample covariance matrix does not perform whitening
reliably in the face of outliers because unreliable esti-
mates of both the mean and covariance matrix are ob-
tained. In this section, the inuence of highly deviating
observations on covariance matrix estimate and com-
puted eigenvalues and eigenvectors is studied. Then a
method for estimating the covariances reliably in the
presence of outliers is presented. This robust approach
stems from generalized maximum likelihood principle
[4].

The noise v in (1) are assumed to be additive "-
contaminated distributed as

F = (1� ") F0 + " G; (3)

where the actual distribution F is a mixture of outliers
with unknown distribution G and the nominal noise
distribution F0. The fraction of outliers is " (< 0:5).
It is important to note that additive noise is assumed
to act on the observed mixtures instead of the sources.

Figure 1 illustrates some of the problems encoun-
tered in whitening in the presence of highly deviating
observations. Points labeled with a; b; c; d; e may be
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Figure 1: Highly deviating observations a,b,c,d,e in-
uence the estimated variances and correlations and
consequently the eigenvalues and eigenvectors signi�-
cantly.

considered outlying observations and they signi�cantly
inuence the estimated covariance matrix. Point a in-
ates the variances but has little e�ect on correlation.
Point b reduces the correlation and inates the vari-
ance along the horizontal axis. Point c has little e�ect
on variance but reduces correlation. Points b and c add
an insigni�cant dimension to data. If one draws an el-
lipse of equidistant points using Mahalanobis distance
from the center of the data set, points d and e blow up
this ellipse signi�cantly. In addition, these observations
attract the mean towards them and make the density

appear asymmetric. Consequently, the eigenvalues and
eigenvectors of the covariance matrix C are inuenced.
The eigenvalue spread

�max( bC)=�min( bC):
and the whole eigenvalue spectra of the estimated co-
variance matrix as well as the directions of the eigen-
vectors may drastically di�er from true ones.

Whitening transform W can be de�ned by terms of
eigenvalues and eigenvectors of the covariance matrix
C as follows

W = ��1=2UT ; (4)

where � is diagonal matrix of the eigenvalues and U is
a matrix of eigenvectors. In case the noises can be
assumed to be zero mean and Gaussian, techniques
such as MDL estimate the number of signal compo-
nents using the ratio of geometric to arithmetic mean
of the eigenvalues [7]. Unreliable estimate results in
both cases if the eigenvalues and eigenvectors are sig-
ni�cantly perturbed.

Matrices U and � are obtained here by estimating
covariance matrix iteratively so that highly deviating
observations are downweighted. Estimates of the mean
� and covariance C are computed as follows:

b� =

Pn
i=1 wixiPn
i=1 wi

(5)

bC =

Pn
i=1 w

2
i (xi � b�)(xi � b�)TPn
i=1 w

2
i � 1

: (6)

The weights wi are recomputed at each iteration using
distances di

d2i = (xi � b�)T bC�1(xi � b�)
and the computation is iterated so that distances are
computed using the current estimates of � and C. The
weights are computed by:

wi =

8<
:

1 if di = 0

w(di) =
sin(di=b)

di=b
if di � dthr

0 if di > dthr;

(7)

where constant b = d0=� and d0 � dthr are tuning pa-
rameters controlling the shape of the weighting func-
tion and the distance where the inuence of an obser-
vation goes to zero. The weighting function is depicted
in Figure 2. If dthr = d0 weights go smoothly to zero,
otherwise they drop abruptly to zero at dthr. If time
ordering of data is of importance, outlying sample have
to be substituted by a reasonable value so that no new
signal components are introduced. Here they are re-
placed by a weighted sum of a few of its neighboring
values. The weights w(di) above are employed in the
summation.
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Figure 2: Two di�erent weighting functions. The dot-
ted line depicts a weighting function where d0 > dthr

2.2. Separating matrix estimation

An iterative least squares batch algorithm for source
separation is employed. The relationship the between
matrix H and input X may be written

X = HG

where G = G(Y ) = [g(y(1)) � � � g(y(n))] and H ap-
pears within G as well. The error e is de�ned by

e = x�Hg(HTx) (8)

where g(�) is an appropriate nonlinear function, for
example, tanh() for negatively kurtotic source signals.
The least squares estimate of H is obtained as follows
[6]

bH = XG+;

where G+ is the Moore-Penrose pseudoinverse of G.
The cost function used above is a Bussgang equaliza-
tion cost. In each iteration, values of y = ĤTx needed
for forming matrix G are computed using the current
estimate of H .

3. EXAMPLES

In this section, performance of the proposed BSS method
is investigated in simulation. Example separation re-
sults are shown and analyzed quantitatively using MSE
measure. Moreover, the robust whitening is analyzed
quantitatively by comparing the eigenvalue spectra and
directions of eigenvectors of estimated covariance ma-
trix to theoretical values and values computed from
sample covariance matrix. The number of signals is
estimated using the MDL criterion. An example of
separation from "-contaminated mixtures is given in
Figure 3. In our simulation, m = 5 source signals and
n = 7 mixtures with randomly generated mixing coef-
�cients in matrix A are used. Each observed mixture
of 500 samples is contaminated with zero mean addi-
tive Gaussian noise with variance �2 = 0:4. Moreover,
10% of the multivariate samples are randomly replaced
by outliers with a large amplitude. The noisy data are
�rst whitened which is followed by the separation. The
number of signals was estimated using the MDL crite-
rion. The robust method estimated consistently over

di�erent realizations that there are 5 signals compo-
nents whereas the estimate based on sample covariance
matrix was 4 in the example above and it varied be-
tween 4 and 6 depending on realization. Figure 4 shows
the eigenvalue spectra obtained for the data shown in
Figure 3.

Computation of the MSE between the recovered
and original sources over large number of realizations
is di�cult because the order or sign of the sources may
change in the separation. Consequently, one needs to
�nd matching pairs of estimated and original sources
and compute the MSE between pairs yielding the min-
imum error. The SNR between the true and estimated
source signals si and yi is given in terms ofMSE(si;yi)
as follows

SNR(si;yi) = �10 log10MSE(si;yi):

SNR's are averaged over all components and over 10
realizations of 500 samples. The obtained SNR's are
given in Table 1.

Table 1: Obtained mean and minimum SNR's using
robust and conventional whitening. The mean SNR
are computed over 10 realizations and over all sources.

Robust Ĉ Sample Ĉ
mean SNR 35:66 dB 29:48 dB
min SNR 33:55 dB 27:05 dB

Outlying observations tend to o�set the mean and
inate the eigenvalues as well as rotate the eigenvec-
tors of the covariance matrix. As a result, there is
error in the whitening transform which applies scal-
ing and rotation transformations to the observed data.
The covariance matrices estimated from noisy data are
compared to covariance matrix of noise-free mixtures
based on eigenvalues and eigenvectors. Eigenvalues are
compared using the ratio between the sum of eigenval-
ues and eigenvectors by determining the angles between
corresponding eigenvectors. The angle between eigen-
vectors u and v is determined by\(u;v) = cos�1juTvj.
The eigenvalues are ordered such that �1 > �2 > � � � >

�m � � � � � �n and the related eigenvectors respec-
tively. One needs to be careful in comparing the direc-
tions because the order of the eigenvectors may change
due to outliers. Only the m = 5 eigenvectors asso-
ciated with the signal subspace are used in the com-
parison. The results on eigendecomposition based on
500 samples and 10 realizations are given in Table 2.
The performance of sample covariance estimator rela-
tive to robust estimator matrix is at worst for small
contaminated samples. Both methods yield reasonably
good estimates of the largest eigenvalue and the related



Table 2: The inuence of outlying samples on eigenval-
ues and eigenvectors. The di�erence in eigenvalues is
expressed using the ratio of the sum of eigenvalues of
estimated and true covariance matrices and the di�er-
ence in eigenvectors by the angle between the estimated
and true eigenvectors.

Robust Ĉ Sample Ĉ

mean
P

�̂i=
P
�i 1.01 1.17

max
P

�̂i=
P
�i 1.04 1.31

mean cos�1juTi ûij 3:0 degr. 9:7 degr.
max cos�1juTi ûij 9:2 degr. 40:1 degr.

eigenvector. Sample Ĉ starts to produce poor results
for subsequent smaller eigenvalues and related eigen-
vectors. In our experience, the proposed method has
a performance close to optimal also in nominal condi-
tions, i.e., if there are no outliers present in the data
set.

4. CONCLUSION

The problem of BSS in the face of outliers was inves-
tigated. The observed data were whitened in a robust
manner and sources were separated using an iterative
least squares algorithms. The inuence of outliers was
analysed in detail. In separation, a signi�cant improve-
ment in SNR over a method based on sample estimates
was achieved.
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Figure 3: An example of BSS from noisy sequences:
(a) Noise free source signals, (b) "-contaminated mix-
tures, (c) separation result using robust whitening and
(d) separation result using whitening based on sample
covariance matrix.
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Figure 4: The changes in eigenvalue spectrum for the
example in Fig. 3: x's are the spectrum obtained us-
ing robust estimate and o's using sample estimate of
covariance.


