IMPROVING SIGNAL SUBSPACE ESTIMATION AND
SOURCE NUMBER DETECTION IN THE CONTEXT
OF SPATTALLY CORRELATED NOISES.

P. Fabry - Ch. Serviére - J.L. Lacoume
LIS-ENSIEG., BP 46

38402 Saint-Martin d'Héres, FRANCE.
fax: +33 476826384

e-mail:

ABSTRACT

This paper addresses the issue of Orthogonal Techniques
for Blind Source Separation of periodic signals when the
mixtures are corrupted with spatially correlated noises.
The noise covariance matrix is assumed to be unknown.
This problem is of major interest with experimental sig-
nals. We first remind that Principal Components Analy-
sis (PCA) cannot provide a correct estimate of the signal
subspace in this situation. We then decide to compute
the spectral matrices using delayed blocks to eliminate
the noise influence. We show that two of these delayed
spectral matrices are enough to get the unnoisy spectral
matrix. We also introduce a new source number detec-
tor which exploits the eigenvectors of a delayed matrix
to estimate the signal subspace dimension. Simulation
results show that the signal subspace estimation is im-
proved and the source number detector is more efficient
in this situation than the usual AIC and MDL criteria.

1 INTRODUCTION

Blind Source Separation consists in recovering the sig-
nals emitted by p sources from n (n > p) linear and
stationary mixtures of these signals. The n sensors are
receiving convolutive mixtures corrupted with additive
noises. The observation vector z(t) is modelled as:

r n
2(t) = 3 hy(t)* silt) + ) g () x (1) (1)
J=1

b

* 5;(t) are periodic sources of different frequencies,

e the k-th component of h;(t) is the impulse response
characterizing the propagation from the i-th source to
the k-th sensor,

* the elements of b(¢) result from the filtering of n spec-
trally white gaussian noises n;(t).

o the sources are mutually independent and independent
from the noises.

In the frequency domain, the convolutive mixture be-
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comes an instantaneous mixture at each frequency bin

X(f) = H(f).S(f) +B(f) (2)
Y

H(f) is the n x p matrix whose columns are the Fourier
Transforms of vectors h;(t). In order to simplify the no-
tation, (f) will be omitted.

Orthogonal techniques use PCA as a first step, to whiten
the observations. This relies on projecting the obser-
vations on an orthonormal base of the signal subspace
E,. Further separation is achieved using of 4-th order
information [1] or joint diagonalisation (3] to find the
exact base of the sources. Obviously. the efficiency of
the whole process depends on the accuracy of the first
step. The whitening matrix is built from the eigenval-
ues and eigenvectors of 5 = E{} .Y’} which is the
spectral matrix of the unnoisy mixtures. Unfortunately
7., Is estimated from v (4 = 5.+ ) where v s
=Y =X =X =Y =B =B
unknown. When the noise spectral matrix is not pro-
portional to the identity matrix (i.e. when the noises are
not spatially white), ~ , 1s 1l estimated. Consequently
the source number ana}the signal subspace are not cor-
rectly estimated. The PCA looses efficiency. This prob-
lem is reminded in the second part of this paper. In the
third part we introduce a new estimator of 2, using

delays to eliminate the noise influence. This estimator
involves the inverse of a matrix that is theorically of
rank p but numerically of rank n. It is more robust
to establish the source number directly from a delayed
spectral matrix in order to use the pseudo-inverse algo-
rithm to get 2 A good estimation of 2, will provide
the orthonormal base that is necessary—to whiten the
observations. Consequently the fourth part is devoted
L0 a new source number detector using the eigenvectors
of a delayed spectral matrix. Simulation results for both
the source number and the signal subspace estimation
are given in the fifth part.



2 MISMATCHING OF THE USUAL PCA IN
SEVERE NOISE CONDITIONS

The vector of unnoisy mixtures can be written as:
Y = H.S with E{§'8"}= L (3)

where * stands for the transconjugate. The Singular
Value Decomposition of H' is equal to:

,'.21/2'2 (4)

o 1" and [I are two unitarian matrices respectively n x n
and p x p.

e DY isan x p diagonal matrix with elements \/};,i =
1...p. When the first mixing matrix H is unitarian, the
A; are exactly the Power Spectral Densities (PSD) of the
sources at the frequency f. The Eigenvalue Decompo-
sition of 2, can be written, using the singular elements

ofg' as

Y*=v.Dy* (5
D = diag(Ar.....A,.0,...,0) (6)

>

The eigenvalues \; are assumed to be ranged in decreas-
ing order. The first p eigenvalues and their correspond-
Ing eigenvectors are representative of E,.

PCA consists of projecting X on an orthonormal base
of the signal subspace with a matrix W verifying rela-
tion (7). The solution for W is given in (8) where Dy, is
the square submatrix containing the first p diagonal ele-
ments of D and § the rectangular submatrix containing
the first p columns of v
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Unfortunately. in a noisy context, one can only access
to 2, When the noises are spatially white, the noise

spectral matrix is on the form (9) and the Eigenvalue
Decomposition of *;X provides the same eigenvectors as

for;,y (10).

V.(D+oi L)Vt (10)

=X == =n

Q

In these conditions it is possible to use algorithms such
as AIC and MDL for estimating the source number D
Then o} can be estimated from the n —p last eigenvalues
of Q2 and substracted to the p first eigenvalues to get an
estimate of D,.

With experimental signals 1s is hardly ever on the form

of (9) and the factorization (10) is not possible anymore.
Consequently, in the Eigenvalue Decomposition of 2,

the first p column vectors don’t span anymore the gig-
nal subspace but a p dimensional subspace in the n di-
mensional space of observations. The eigenvalues are
ill estimated too and the AIC and MDL methods fail.
Consequently the whitening matrix W is ill estimated
because of errors on the signal subspace dimension and
the eigenvectors in V,. In the case of periodic sources,
we propose in the next section. a new estimator of

2y

robust to spatially correlated noise.

3 A DIRECT ESTIMATOR OF THE UN-
NOISY SPECTRAL MATRIX

The spectral matrix 2y 1s estimated from the N-point

Discrete Fourier Transform of z on M sliding blocks. In
the case of periodic signals it is interesting to exploit the
fact that the autocorrelation lengths of the sources are
larger than the correlation lengths of all the noises. Let
n, be the greater correlation or cross-correlation length
of the n noises. Let X be the DFT of I on a temporal
block and X" the DFT on a block delayed of 7 samples.
If 7 > 7, at each frequency bin. the covariance matrix
1; = E{X.X"*} contains only information about the
sources. Suppose that the sources have harmonic fre-
quencies f; close to the analysis frequency. Using (3)

7;_ can be written

7. = HE{S.87Y) g7 (11)
d
e_jg‘—‘.fl‘r 0
g = (12)
0 6—./‘.'r.\fpr

From (4) and (11) we get:

+.DVT (13)
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=
=
=

It is theorically possible to find back the Eigenvalue De-
composition of 2 (5) with the use of a second spectral

matrix obtained with delay —27. The final relation is:

R VG O B (14)
We must pay attention to the fact that this expression
involves the inverse of a matrix of size n but rank D.
As a practical consideration, stability is improved using
the pseudo-inverse algorithm, so that only the non zero
eigenvalues of“_/;'(+ are inversed. Unfortunately the n—p

last eigenvalues resulting from numerical computations
are hardly ever equal to zero. Choosing the number
of eigenvalues to inverse is the same as choosing the
number of sources. Since the eigenvalues of the delayed
spectral matrices are not easy to handle. we are going



to implement, in the next section. a source number de-
tector using the eigenvectors.

4 A NEW SOURCE NUMBER DETECTOR

Denote &.D_,l-/‘“:.Uf the SVD of 47 . Using relation (13)
1t is poss_igl@l?w that the ﬁrst_p column vectors of 17
and U, result from unitary transforms of Vi, They are
orthonormal bases of E,. The n—p last vectors span E,

that is orthogonal to E,. As a conclusion the matrices
V> and U, can be written as [1'.7.] and ['.UL]. The

matrix 4 = V;* .U, involves the cross products ¥’+.U_L

and Vf.g'+ that are theoretically zero. This particu-

lar structure of A reveals the number of sources. The
picture below shows a matrix 4 obtained with the noisy
mixtures of two sources observed on six sensors. The
noises are spatially correlated and the Signal to Noise
Ratio is around -5 dB on every sensor. Since this cri-

terion is quite visual, we are going to process 4 as an
image. We first expand 2 to a 3n x 3n matrix. in order
to process filters of size 3 x 3. Then. a Laplacian filter
is applied to enhance the contrasts. The positive pix-
els are set to one and the others to zero. As a result,
the left and upper contours of the submatrix 5 L7y are

only constituted of ones. This quite simple test on the
matrix gives the number of sources.

5 DISTANCE TO THE SIGNAL SUBSPACE
- SIMULATIONS RESULTS

As we said in section 2. the efficiency of PCA relies on
both the estimation of the source number and the esti-
mation of an orthonormal base of E,. We now need a cri-
terion to measure jointly the accuracy of the estimated
eigenvalues and the closeness to the signal subspace. De-

note ||.|| the matrix 2-norm, and 7., the estimate of I,

The distance ][7}, —i;“ is not appropriate since l’; can
be close to ’—withgut the good eigenvalues and eigen-

vectors. ansequently the criterion must rely on the
whitening matrix W. The usual rejection rates referred
in [2] cannot be used here since the rotation matrix [T
1s undetermined after the PCA. We must pay atterlt\io;
to the fact that the estimated whitening matrix Wis
not uniquely determined. Denote i = 2_1/2.17}+. If

the column vectors in V, form an orthonormal base of

E, then 1_7,+.V} is close to a unitarian matrix P that is

in fact diagonal when the mixing matrix A is unitarian.
In this particular situation, if the estimated eigenvalues
n & are closed to the real ones, then the product (15)
is close to P

Ww#=p, "t y,.p,1 (15)

——
=

# denotes the pseudo-inverse. This considerations leads
to the following criterion of distance

—

AW W)=| |EWw#-1 | (16)

We show simulation results on figure 1, 2 and 3. Two
sources are mixed and observed on 6 sensors. Each
source is composed of 2 pure frequencies (0.14,0.36 and
0.15.0.37). The mixture is obtained from ARI filters.
The spatially correlated and spectrally colorated noises
result from the filtering of white noises with AR] filters
too. The noise power spectral densities are different on
every sensor and the corresponding Signal to Noise Ra-
tios are about —5 dB. Computations are processed on
600 sliding blocks of 64 samples with = = 90 samples.
Denote y; and 5. the estimation of v  respectively with
the uquPCA—method, and the new method involving
the delay 7. The number of sources p is supposed to be
known here, to compare only the distance to the signal
subspace without influence of the detector. dl and d2
are the corresponding distances to the signal subspace.
In figure 1 one can see that the eigenvalues of 4, in dot-

ted line are very far from the eigenvalues of l;—in solid
line whereas in figure 2. the eigenvalues of Y2 are very
close to the eigenvalues of ... The distance d2 to the

signal subspace is much lower than the distance d1 as
shown in figure 3.
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Figure 1: Eigen values Ofly and 7

Figure 4 and 5 are devoted to the source number de-
tection. We compare the new detector based on the
eigenvectors of 37 to the usual AIC and MDL crite-

ria based on the eigenvalues of 1y These two figures
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Figure 2: Eigen values of 2, and 7,
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Figure 3: Distance to the signal subspace

give the probability of detection versus the Signal to
Noise Ratio in dB. The simulation are run with two
pure frequencies (0.14,0.15) mixed with AR1 filters and
observed on 6 sensors. The probabilities of detection
are estimated from 100 sets of data. For every set the
spectral matrices are obtained from 600 FFT blocks of
64 samples. Figure 4 involves spatially and spectrally
white noises. which corresponds to the optimal condi-
tions for the AIC and MDL methods. The new method
has similar performances as AIC. Figure 5 involves spa-
tially correlated and spectrally colorated noises result-
ing from the filtering of white noises with AR1 filters.
In this situation the usual AIC and MDL methods are
not trustable at all even for high SNR whereas the new
method is working still the same.

CONCLUSIONS

This paper involves simulation results with spatially cor-
related and spectrally colorated noise. In this context
the PCA fails because the unnoisy spectral matrix is
ill-estimated. We then propose a new estimator of this
matrix computed from two interspectral matrices using
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Figure 5: PD in spatially correlated noise

two different delays. We choose a distance criteria to the
signal subspace and show the efficiency of the method
with a simulation in severe conditions (Signal to Noise
Ratio around -5dB). A quite simple source number de-
tector using the eigenvectors of a delaved matrix is in-
troduced. Simulations show that this detector is more
robust than the usual AIC and MDL criterion in any
situation. Knowing the source number makes the es-
timation of the unnoisy spectral matrix more robust.
Consequently, using jointly the new detector and the
new estimator of the unnoisy spectral matrix will pro-
vide a quite robust tool for second order whitening.
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