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ABSTRACT
A novel direction-finding (DF) algorithm based on the linear
prediction (LP) technique for exploiting cyclostationary
statistical information (spatial and temporal) is explored. Its
implementation is simple in comparison with that of existing
cyclic methods. The effectiveness of the presented algorithm
is demonstrated and compared with the existing
conventional cyclic algorithms through numerical examples.

1.  INTRODUCTION
In recent years, to satisfy the ever growing demands for a
large number of mobiles on communications channels, the
application of array processing has been expected for mobile
communication systems to increase channel capacity and
spectrum efficiency and to extend range coverage. However
for this application, the knowledge of a reference signal, a
training signal or the directions of arrival (DOA) of the
signal of interest (SOI) is usually required to improve the
system performance. Several methods have been proposed
for the DOA estimation problem. The most attractive ones
among them are the subspace algorithms, such as MUSIC
(multiple signal classification) [1] and ESPRIT (estimation
of signal parameters via rotational invariance techniques) [2],
because of their high-resolution. However, like the
conventional array processing methods, the subspace
algorithms basically rely on the spatial properties (i.e. spatial
delay) of the signals impinging on an array of sensors and
exploit the eigenspace property of the array covariance
matrix. One shortcoming of these approaches is that they
ignore the temporal properties of the desired signals.
Nevertheless, in general it is very difficult to efficiently
combine the temporal and spatial information of the signal
in determining the source DOA.

Many modulated signals arising in communications are
cyclostationary due to the underlying periodicity arising
from carrier frequencies or baud rates [3], [4]. By exploiting
this special temporal property of the signals, some cyclic
direction-finding (DF) algorithms for improving the signal
detection capability have received much attention [4]-[10].
The cyclostationarity concept was first introduced into array
signal processing in [5] and [6], where the correlation matrix
estimate used in the general subspace algorithm is replaced
by the cyclic array covariance matrix estimate. Since the
cyclic correlation function is dependent on the lag parameter,

the determining of the optimal lag parameter where the
correlation function achieves its maximum is very
important; unfortunately, in reality this lag parameter is
rarely available. Three possible approaches used to over
come this difficulty are proposed. One is to use the cyclic
spectrum in place of the cyclic correlation [5], another is to
combine all the cyclic array correlations of different lags [7],
and the last one is to stack the cyclic subspaces
corresponding to the different lags [8]. However, due to the
additional computational cost of using the cyclic spectrum in
the first approach and the burdensome evaluation of the
cross correlations in the others, all these methods are not
computationally efficient [7].

In this paper, a new approach is proposed for the
estimating DOA of cyclostationary signal that utilizes a
linear prediction (LP) technique. For resolving the problem
of the choice of the lag parameter, we present a new
alternative approach that exploits the cyclic statistical
effectively in a forward-backward way, enabling robust
high-resolution performance to be achieved. Furthermore,
the presented scheme is simpler and more convenient to
implement than those using the conventional cyclic
algorithms, such as cyclic MUSIC and cyclic ESPRIT [5]-
[10], where the computation of the cyclic array covariance
matrix is burdensome. In addition, the important information
contained in the cross correlation between the different
sensor outputs is not considered in the SC-SSF (spectral
correlation-signal subspace fitting) algorithm [7]. The
effectiveness of the presented algorithm is demonstrated and
compared with the conventional algorithms through
numerical examples.

2.  PROBLEM SATEMENT
2.1  Data Model
As shown in Fig. 1, we consider a uniform linear array
(ULA) at a base station consisting of M  identical isotropic
sensors. The signals received from P  sources ,,ns �)(1

)(n,sP  arrive at the array from the directions ,21 θθ ,

P,θ� which are measured clockwise from the normal of the
array. In the narrow band model, we assume that the carrier
frequency is fairly large compared to the bandwidth of the
modulating signal, then the discrete time narrow band signal
model for the DF problem is given by
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Fig. 1  The structure of a uniform linear array.
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spacing and the speed of propagation, respectively.
In this paper, the source signal )(nsk  is assumed to be

independent of )(nsl  with lk θθ ≠  for lk ≠ . The additive
noise )(nvi  is assumed to be Gaussian distributed with zero-
mean and uncorrelated with the source signals and the other
noises. The received signal vector can be expressed as
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2.2  Cyclostationarity
In communications, many different types of modulated
signals can have highly distinct cyclic correlation functions
with a known cycle frequency, which corresponds to the
underlying periodicity arising from carrier frequencies or
baud rates, while stationary noise and interference exhibit no
cyclostationarity with the same one [3], [4]. By evaluating
the cyclic correlations of the received data at certain cycle
frequencies, we can extract only signals with the same cycle
frequency and null out the stationary additive noise and all
other co-channel interfering signals with different cycle
frequencies, then the signal detection capability can be
improved.

In cyclic algorithms, it is assumed that there are αP  SOI
sharing the same cycle frequency α , where PP ≤α  and α
is either known or estimated from the carrier frequency and
baud rate [3], [4]. In this paper, we suppose that it is known.

From (1), the cyclic autocorrelation function (CACF) of the
received signal )(nxi , and cyclic cross-correlation function
(CCCF) between the data )(nxi  and )(nxm  are respectively
expressed as follows,
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where τ  is the lag parameter, and the notation ∞→>⋅< N

denotes the discrete time averaging as
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3.  LP BASED DOA ESTIMATION
The linear predictive method estimates the received data of
one sensor using linear combinations of the remaining
sensor minimizes the mean square prediction error [11]-[13].
Here we assume the output of m th sensor can be predicted
from the remaining 1−M  sensor outputs at any instant as

∑
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where Mm≤≤1 , Mi ,,�1=  and mi ≠ . The prediction
error )(nmε  between the actual output and the estimate is
given
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where )(nmε  is assumed to be spatially and temporally
white Gaussian noise.

Under the assumptions, by multiplying equation (7) by
)()( 2−2−∗ − τπατ nj

m enx  and applying the time-average operator
∞→>⋅< N  in (5), we have [12]
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where the CACF )(, τα
mm xxR  and CCCF )(, τα

mi xxR  are given
in (3) and (4). The choice of the position m  of the array for
predicting its output is flexible, and it affects the resolution
capability and the bias in the DOA estimation corresponding
the SNR and the directional separation of sources [11]. Here
for simplicity, we selcete 1−= Mm , and choose ,, 1±0=τ

)(, 1−± Q� , then from (10), we have
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where the notation by ‘α ’ is omitted next. From (3) and (4),
we can find that the contributions from the interference and
noises to the CCCF’s and CACF in (9) vanish, by selecting
the cycle frequency α appropriately. The equation (9) can
be rewritten as

yaR = (10)

As discussed below, solving equation (10) depends upon
a number of factors including the relation size of Q  and
M and the rank of matrix R . The following case will be
considered:

1. Square matrix: 1−= MQ 1-2 . If R  is nonsingular,
then the inverse matrix 1−R  is uniquely defined by

yRa 1−=ˆ (11)

2. Rectangular matrix: 1−< MQ 1-2 . If the rank of R
is 1-2Q  (the rows of R  are linearly independent),
then the 1)-(21)-(2 QQ ×  matrix HRR  is invertible
and the minimum norm (MN) solution is

yRRRa 1−= )(ˆ
MN

HH (12)

The matrix 1−+ = )( RRRR HH  is known as the pseudo
inverse of the matrix R  for the undetermined
problem.

3. Rectangular matrix: 1−> MQ 1-2 . If the colums of
R  are linearly independent (R  has full rank), then the
matrix HRR  is invertible and the least square (LS)
solution is

yRRRa HH 1−= )(ˆ
LS

(13)

The matrix HRRRR H 1−+ = )(  is known as the pseudo
inverse of the matrix R  for the overdetermined
problem.

With the singular value decomposition (SVD) of R , we
obtain

HVUR ΛΛ= , (14)
where ],,[ 1−1= Muu �U , ],,[ 1−1= Mνν �V  and ,,(diag �1= λΛΛ

)1−Mλ . It is then clear that the rank of R  should be equal to
the number αP  of the SOI with the cycle frequency α . By
using the SVD and the number of αP , the estimate of the
coefficients a  is obtained by
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Turn to the array response vector in (2), let's introduce
λ  as the associated carrier wavelength and D  as the
normalized distance between the reference element and the
second sensor )/( 2= λdD . By substituting kk θπω sin= ,
then the array response vector will be modified as follows

( ) T
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The power spectral density )(ω
MxS  of the LP model is given

by
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where j+ez = . Therefore after the parameters }{ ia  have

been estimated, then the desired DOA can be found by
searching the positions of peaks of the spectrum in (17).

In the presented algorithm, we can choose the cyclic
correlation functions as )(, τα

Mi xxR  or its conjugate
counterpart, where Mi ,,, �21= . Really we use cyclic
information from all the sensors but in a shorter way in
comparison with the cyclic subspace methods, such as the
cyclic MUSIC and ESPRIT algorithms, where the cyclic
covariance matrix of all sensors is required [5]-[8]. In this
paper, we exploit all the temporal information contained in
the cyclic correlation functions avoiding some of the
drawbacks of existing cyclic algorithms, and the proposed
algorithm is simpler and more convenient than other cyclic
subspace methods known until now [5]-[8].

4.  SIMULATION RESULTS
We finally present the simulation results to show the
effectiveness of the proposed method. We considered a ULA
having eight elements with half-wavelength spacing. The
signal to noise ratio (SNR) for each source is defined as the
ratio of the power of each source to that of the background
noise.

There are two signals impinging on the array, one is the
BPSK signal with 0.5 roll-off factor and 0.25 baud rate
( 250= .α ) which arrives from 50o, and the other is the AM
signal arrives from –40o ( 40= .α ). The length of the sample
was 1024, and the lag parameter was 7=Q . Fifty trials are
performed for searching DOA of the BPSK and AM signals
with 250= .α  and 40= .α  in the cases where the SNR of
BPSK is 10dB while SNR of AM varies from 0dB to 10dB.

Table 1  Comparison of the DOA estimation of the
BPSK signal with 250.=α .

SNR of AM  Proposed Method Cyclic MUSIC

(dB) mean RMSE mean RMSE
0 51.705 0.241 48.186 0.257
2 51.587 0.224 48.189 0.256
4 50.802 0.113 48.177 0.258
6 51.083 0.153 48.174 0.258
8 51.378 0.195 48.163 0.260

 10 49.091 0.129 48.174 0.258

Table 2  Comparison of the DOA estimation of the
AM signal with 40= .α .

SNR of AM  Proposed Method Cyclic MUSIC

(dB) mean RMSE mean RMSE
0 -40.061 0.009 -39.045 0.135
2 -40.037 0.005 -39.045 0.135
4 -40.037 0.005 -39.053 0.134
6 -40.019 0.003 -39.044 0.135
8 -40.014 0.002 -39.041 0.136

 10 -40.008 0.001 -39.033 0.137



The simulation results of DOA estimation are shown in
Table 1 and 2, where the mean and root mean squared-error
(RMSE) are compared with the cyclic MUSIC and the
proposed approach. Fig.1 and 2 plot the spatial spectra for
the BPSK and AM signals with SNR of BPSK is 10dB and
that of AM is 0dB where only ten trials are shown in each
figure respectively. As shown in the tables and figures, we
can find the proposed method has the advantage of the cyclic
MUSIC.
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Figure 1  The spatial spectra of the DOA estimation
of the BPSK signal by using the cyclic MUSIC and
the proposed method with 250= .α .
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Figure 2  The spatial spectra of the DOA estimation
of the AM signal by using the cyclic MUSIC and the
proposed method with 40= .α .

5.  CONCLUSIONS
For the DOA estimation of the cyclostationary signals in
communications, a new signal selective approach based on
LP model was proposed. In the presented method, the
problem of the choice of the optimal lag parameter is
resolved by exploiting the cyclic statistical effectively in a

forward-backward way, and the robust high-resolution
performance can be achieved. Furthermore, the presented
scheme is simpler and more convenient to implement than
those using the conventional cyclic algorithms. The
effectiveness of the presented algorithm is demonstrated and
compared with the conventional algorithm through
numerical example.
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