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Abstract

The aim of this paper is to study the presence of manifold
ambiguities [1], [2] in linear arrays. We propose a general
framework for the analysis and so we obtain a
generalisation of results given in recent publications [3], [4]
for any rank ambiguities. We present a geometrical
construction able to determine all the ambiguous directions
which can appear for a given linear array. This is a
geometrical approach closely connected to [4]. The method
allows determination of any rank ambiguities and for each
ambiguous direction set the rank of ambiguity is
determined. The search is exhaustive, Application of the
method requires no assumption for the linear array and is
easy to implement. We apply the method to the search of
ambiguities for sparse linear arrays, in particular minimum
redundant and non redundant arrays [5], [6], [7]. We show
how an ambiguous generator set can be associated to each
intersensor distance if the intersensor distances (lags) are
all multiples of the half wavelength.

1 INTRODUCTION

In the performance evaluation of sources localisation
techniques, resolution is not the only criterion.
Degradations may occur due to parasite peaks in the
spectrum, which may be connected to high sidelobes in the
beam pattern (sometimes referred as quasi-ambiguities) or
to ambiguities themselves. In 1996, Abramovich et. al.
proposed in [1] a study on ambiguities in DOA estimation.
In particular they discussed the ideas of trivial ambiguities,
manifold  ambiguities and  inherent ambiguities.
Ambiguities in the array manifold, called manifold
ambiguities [2], provide parasite peaks in the spectrum of
the high resolution methods based on signal and noise
subspace decomposition, like MUSIC. The aim of this
paper is to study the presence of manifold ambiguities (not
inherent ambiguities [1]) for a linear array of given
geometry.

We propose a general framework for the analysis and
thus we obtain a generalisation of results given in recent
publications [3], [4] for rank one and two ambiguities. For
rank k>3 ambiguities the study is restricted to linear
arrays, for which we derive original and synthetic results.

We present a geometrical construction able to determine ajl
the ambiguous directions which can appear for a given
linear array. This is a geometrical approach closely
connected to [4]. The method allows determination of any
rank ambiguities and for each ambiguous direction set the
rank of ambiguity is determined. The search is exhaustive.
Application of the method requires no assumption for the
linear array and is €asy to implement.

The proposed method is used to study the ambiguities in
nonuniformly spaced linear arrays, with particular attention
given to minimum redundancy and non redundancy arrays
[5], [6], [7]. We show that an ambiguous generator set can
be associated to each intersensor distance when the
intersensor distances are all multiples of the half
wavelength.

2 PROBLEM FORMULATION AND DEFINITIONS

Consider an array with As sensors receiving N
narrowband signals impinging on the array from N
different locations 6....6,. Note

A(Gl,...,ﬁN):[a(é‘,),..‘,a(ﬁ.v)], the which

columns are the sources steering vectors, also called the
array manifold vectors.

The simultaneous localisation of N sources is only
Possible if the array manifold vectors a(§),....,a(6,) are

linearly independent.
An array is said rank & ambiguous for a set of k-1
directions of arrival 6 ....0,., if matrix A4 is singular but

rank k. This can be written [2]:

matrix

3 #0,...,a,,, %0 so that ala(91)+...+ak+]a(¢9k‘l)=0
(a,,...,a,‘.,])eCk+1 e))

3 RANK ONE AMBIGUITIES (FOR GENERAL
ARRAYS)

The wavefronts are supposed straight-line and on the same
plane as the sensors. k, and k, being the ambiguous wave
vectors for the array under consideration, the phase delay of
signal » from sensor m to sensor oneis ¢, =k, . r, . where



f, denotes the position of the m™ sensor in half

wavelength. The ambiguity condition is equivalent to :

e’ +a et =0 @, =g +2n 1 S
3pm» integer (El —RZ)Fm = 2pm7T (2)

with {Rf =2n/A where 4 stands for the wavelength. The

consequence is that, for arrays of arbitrary geometry, rank 1
ambiguities can arise if all of its sensors are located on a set
of parallel lines separated by a distance a > A/2. In the case

of a linear array this result refunds the classical Shannon
condition.

4+ RANK k¥ AMBIGUITIES FOR LINEAR ARRAYS

Let us consider an array, assumed to present a rank k&
ambiguity. By generalisation of previous results, see (8],
[9], [10], we infer that the sensor array can be splitted in &
subarrays (which may be reduced to one sensor). In each
subarray sensors are located on a grid of spacing denoted a.
The & grids are translated one from another. For the first
grid T,, = aV,¥, where ¥ is the unitary vector of the linear
array. Let us denote k = (27/4)d . The ambiguity condition

can be written [9], [10]:
v(4,-d,)=n,(3/a) 3)

where n; is an integer. The corresponding set of ambiguous

directions @,,d,,....ii,,, may be obtained by the following
geometrical construction.

Antenna axis

Figure 1 : Determination of the ambiguous directions of
arrival i, ..., for a linear array.

Thus all the sets of vectors d,,...,d,,, which can be
projected on the grid of step Afa are ambiguous. By
arbitrary translation of this grid, an infinity of ambiguous
direction sets can be obtained. One of these grids has a line
passing by the point (1,0), this grid can be identified with
the concept of "ambiguous generator set” introduced in [4].

It appears clearly on this figure that the condition for no
rank & ambiguities is

k(A/a)>2 4)

Based on the above considerations, we propose a
geometrical method for the determination of all the
ambiguous generator sets for a given linear array. For each
ambiguous generator set the corresponding rank of
ambiguity is also determined.

Let us consider a linear array of M sensors. In order to
determine all the ambiguous generator sets :

1- Compute all the intersensor distances. Note ry = ]FJ - F,.,,
i=1,..,M and j=1,.., M, the intersensor distance in half
wave-length.

2- All the intersensor distances r; smaller than 1 cannot

provide ambiguities because (/?./);-J ) > 2. This result follows

from the construction depicted on figure 2. We " will
therefore work on the set R of distinct intersensor distances
r; , greater than one half wavelength.

3- Consider the first intersensor distance r, € R. Compute

the corresponding ambiguous generator set by using the
geometrical construction with a =7, (see figure 2).

6y = Arccos(1 -3(a)) 4 Arccos (1 - /a)

180° \L & = Arccos(l—Z(,{/a‘)) ‘ 0°

A/a Ma Y Ala Y. Aa
1-3(¥a) 1-Va !
Figure 2 : Determination of the ambiguous generator set
{:91 ,6,,6,,6,, 65} for a linear array.
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The ambiguous generator set is {O°,€3,M,¢9,}, where / is
the number of ambiguous directions for this generator set.

4- The rank of ambiguity corresponding to this ambiguous
generator set is given by the number of subarrays.
Therefore, it is necessary to split the array into subarrays so
that in each subarray sensors are located on grids of step a.
The grids are all translated one from another. The
construction must be done in order to get a minimum of
subarrays. Note g the number of subarrays.

5- If g/, there is no ambiguous generator set for this
value of 7, .

If g </, then the array presents a rank g ambiguity, the
ambiguous generator set is given by {0°, &,..., 19,}‘

6- Continue with the step 3- until all the intersensor
distances of the set R have been taken under consideration.

The method is very easy to implement and needs no
assumption. Thus all ambiguous generator sets are
determined for the considered linear array.



5. ILLUSTRATION OF THE METHOD BY AN
EXAMPLE

The proposed method can be applied to linear arrays which
intersensor distances are integers or reels. In [9] we have
studied arrays which intersensors distances are reels. Here
we consider the family of sparse linear arrays. All the
intersensor distances are integers (in half wavelength).

Let us consider the non redundant four sensors array on
figure 3.
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P —— . — —d
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Figure 3 - Non redundant array of four sensors. The stars
represent the sensors. The numbers represent the sensor
positions.

First we search all the distinct intersensor distances -
My =l ry=2,n3=3n3=4,r,=5 nr, =6. This array is
called an optimum non redundant array because it presents
a zero redundancy on spacings. Thus there is one, and only
one, pair of elements separated by each multiple of the unit
spacing out to a maximum spacing equal to the distance
between the end elements. For arrays with more than four
sensors, such a sensor configuration does not exist.
Therefore minimum redundant and so called non redundant
arrays have been obtained [5], [6], [7]. These arrays are
known for their good resolution.
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Figure 4 : Ambiguous generator set for a=1.

The geometrical construction gives an ambiguous generator
set {O°,180°}, thus /=2. All the sensors are located on a

grid of step a=1, then g=1. The condition g </ is verified,
therefore the array presents a rank one ambiguity, the
corresponding generator set being { 0°,180°},

a=2: Ala=1.
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Figure 5 : Ambiguous generator set for a=2.

The geometrical construction gives an ambiguous generator
set {0°,90°,180°}, thus /=3. Now the array is splitted in

subarrays.
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Figure 6 : Construction of the two subarrays.

The array can be splitted into two subarrays, then g=2. The
condition g </ is verified, therefore the array presents a
rank two ambiguity, the corresponding generator set being
{0°,90°,180°}.

a=3 : Afa=2/3. The geometrical construction gives an

ambiguous generator set {O°,7OA5°,109.5°,180°}, thus /=4.
The array can be splitted into two subarrays which are (0,6)
and (1,4), then g=2. The condition g <! is verified,
therefore the array presents a rank two ambiguity, . the
corresponding generator set being {0°,70.5°,109.5°. 180°}.

a=4 . A/a=1/2. The geometrical construction gives an
ambiguous generator set {O°,60°,90°,120°,180°}, thus
/=5. The array can be splitted into three subarrays which
are (0,4), (1) and (6), then g=3. The condition q </ is
verified, therefore the array presents a rank three
ambiguity, the corresponding generator set being
{0°,60°,90°,120°,180°}.

a=5 . A/a=2/5 The geometrical construction gives an
ambiguous generator set {0°,53°,78°,101°,127°,180°},
thus /=6. The array can be splitted into three subarrays
which are (0), (1,6) and (4), then g=3. The condition ¢ </
is verified, therefore the array presents a rank three
ambiguity, the corresponding  generator set being
{0°,53°,78° 101°,127°.180°}.

a=6 . A/a=1/3. The geometrical construction gives an
ambiguous generator set
{0°,41°,70°,90°,109°,132° 180°}, thus /=7. The array
can be splitted into three subarrays which are (0,6), (1) and
(4), then g=3. The condition q </ is verified, therefore the
array presents a rank three ambiguity, the corresponding
generator set being {0°,41°,70°,90°,109°,132°,180°}

In order to see the importance of the parasite peaks, we
have simulated the determination of directions of arrival for
this array with the well known high resolution method
MUSIC.

We illustrate the rank three ambiguity. Three sources are
located at 0°, 60° and 90°
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Figure 7 : Three sources are located at 0°, 60° and 90°
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Two parasite peaks appear exactly where they were
predicted. The parasite peaks are here as high as the real
peaks (see figure 7).
If we simulate three sources located at 0°, 41° and 90°, the
predicted parasite peaks all appear but the peaks are less
high (see figure 8).

[_P@udo -spectrum of MUSIC
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Figure 8 : Three sources are located at 0°, 41° and 90°

The construction of minimum redundant arrays is justified
by their great resolution. The above study shows that the
presence of ambiguities in such arrays increases with the
aperture for a given number of sensors.

In order to compare the performances we will study the
uniform linear array. By applying the proposed method, it
appears that there are three different intersensor distances
1, 2 and 3. For each there is one ambiguous generator set.
Only three generator sets are present rank one,
{O°,l80°},rank two, {0°,90°,180°} and rank three,
{0°,70.5°,109.5°,180°} .

In the next section, a study of the presence of generator
ambiguous sets is done for minimum redundant arrays and
non redundant arrays. Array design by using D-optimality
is also considered.

6 GENERAL STUDY OF AMBIGUITIES IN NON
UNIFORMLY SPACED LINEAR ARRAYS

Let us now apply the proposed method to the research of
ambiguous generator sets for sparse linear arrays. In many
papers, [5], [6], [7] non uniformly spaced linear arrays are
designed, in particular minimum redundant, non redundant
and D-optimal arrays. We have study ambiguities for these
arrays until 11 sensors.

In our investigations, we have done simulations on four
families of linear arrays. The minimum redundant arrays
proposed by Moffet [7], which can be splitted in restricted
and unrestricted minimum redundant arrays. A restricted
array is characterized by a minimum of redundancy under
the constraint that no intersensor spacing miss. An
unrestricted array is characterized by a minimum of

redundancy under the constraint that the greatest number of
intersensor spacings are contiguous.

The non redundant arrays are  developed by
Vertatschitsch [5]. No intersensor spacing is redundant but
some spacings are missing. The last family is the D-optimal
array [6]. It use a statistical approach.

We have computed all the ambiguous generator sets for
all the arrays of these four families until 11 sensors. From
these systematic simulations follow that there are the same
number of ambiguous generator sets as different intersensor
spacings. Thus for a given number of sensors, the non
redundant arrays present the more ambi guous generator sets

Therefore application of the proposed method brings
some enlighten in the study of the performances of sparse
arrays. In linear arrays the research of minimum
redundancy in the intersensor distances increases the risk of
apparition of manifold ambiguities.

7. CONCLUSION

We propose a general framework to study ambiguities for
general arrays. For linear arrays, a geometrical construction
is presented and is able to predict all the ambiguous
directions for the considered array. The presented method
Opens a new way to study non uniformly spaced linear
arrays.
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