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ABSTRACT

This paper considers the problem of DOA (direction-of-

arrival) estimation for a small number of fully correlated

sources. The standard spatial smoothing technique [1]

may be applied to this single-snapshot model, but only

for a uniformly-spaced linear antenna array (ULA). In

[2], we introduced a special class of nonuniform array ge-

ometry with embedded partial arrays and a correspond-

ing generalised spatial smoothing (GSS) algorithm. The

initialisation stage of GSS (which is followed by a local

maximum-likelihood re�nement) involves spatial aver-

aging over all suitable noncontiguous sub-arrays with

identical inter-sensor separations. These partial arrays

are themselves nonuniform in geometry, and have a

small number of sensors. It is well known that MU-

SIC may fail to resolve poorly-separated sources when

the SNR and number of spatial averagings are insu�-

cient, due to abnormal DOA estimates (\outliers"). An

additional outlier mechanism for partial-array MUSIC

occurs because each partial array has some associated

manifold ambiguity [3, 4]. Thus for spatial smoothing,

the set of (initial) DOA estimates often contains out-

liers. This paper introduces an algorithm which aims to

identify each outlier and to correct it, if possible.

1 PARTIAL-ARRAY MUSIC (PA-MUSIC)

TECHNIQUE FOR GSS

Consider the problem of DOA estimation for m fully

correlated sources given an M -element (m � M ) non-

uniform linear array (NLA) which belongs to the special

class of geometry with embedded partial arrays, intro-

duced in [2, 5]. There we de�ned a partial array to be a

group of nonuniform linear noncontiguous sub-arrays of

identical co-sequence structure, where co-sequence sim-

ply means the sequence of consecutive inter-sensor sep-

arations (ie. di�erences).

An example geometry which belongs to this class of

embedded partial nonuniform linear array (EPNLA) is

the 7-element array

deg = [0; 1; 5; 6; 9; 11; 12] (1)
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where sensor positions are measured in half-wavelength

units. This EPNLA has n = 8 embedded partial ar-

rays, one of which is the partial array de�ned by the

co-sequence structure

c1 = [1; 5] (2)

since this co-sequence repeatedly occurs as a �xed sub-

array pattern of the deg elements as follows:

d11 = [0; 1; 6]

d12 = [5; 6; 11]

d13 = [0; 5; 6]

d14 = [6; 11; 12]:

(3)

Note that the instances d13 and d14 exist as mirror-

images (the co-sequence order is reversed). Associated

with each partial array are its multiplicity � (number

of occurrences or instances), order ` (number of co-

sequence elements involved), and aperture a.

Here we illustrate DOA estimation performance using

the 16-element EPNLA presented in [2, 5]:

d55 = [0; 1; 5; 6; 8;10;19;23; 26; 34; 37; 41; 44; 52; 53; 55] :

(4)

Table 1 shows the �`-distribution and Fig. 1 illustrates

the a-distribution of partial arrays for this geometry.

The GSS technique may be applied to a NLA pro-

viding it yields at least one partial array of multiplicity

� � m and order ` � m.

`
� 3 4 5 6 7 8 9

3 33 9 0 0 0 0 0

4 32 3 0 0 0 0 0

5 12 0 0 0 0 0 0

Table 1: Partial array distribution by multiplicity (�)

and order (`) for the EPNLA d55 for m = 3 and the

search range 3 � ` � 5 and 1 � c � 18 (see [2, 5]).

There are n = 89 partial arrays with a total of N = 279

instances available for spatial smoothing.
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Figure 1: Aperture histogram of d55 partial arrays.

Let y
ij
be the (`i+1)-variate snapshot vector corre-

sponding to the jth instance (j = 1; : : : ; �i) of the i
th

partial array (i = 1; : : : ; n). If any instance of a partial

array occurs as a mirror-image (ie. in reverse order),

then the corresponding snapshot vector is observed by

reversing the order of antenna samples and taking the

complex conjugate of the vector. Thus for each partial

array we may de�ne the (`i+1) � (`i+1) partial-array

covariance matrix by spatial smoothing to be

R̂i =

�iX
j=1

y
ij
yH
ij
: (5)

Let Ĝi be the noise eigen-subspace of R̂i, then Ĝi con-

sists of at least one eigenvector for any suitable partial

array. Thus the MUSIC pseudo-spectrum for the ith

partial array is

fi(�) =

h
aH
i
(�) Ĝi Ĝ

H

i
ai(�)

i�1
(6)

where ai(�) is the (`i+1)-variate manifold vector corre-

sponding to the partial array geometry. The PA-MUSIC

pseudo-spectrum introduced in [2] simply involves the

sum over all suitable partial arrays:

fPA(�) =

nX
i=1

h
aH
i
(�) Ĝi Ĝ

H

i
ai(�)

i�1
: (7)

The PA-MUSIC DOA estimates, de�ned as the m great-

est maxima of fPA(�), are then used to initialise a lo-

cal maximum likelihood (ML) re�nement procedure [2].

Obviously this local re�nement can only be successful if

these initial estimates do not contain outliers.

Unfortunately, there are two mechanisms contributing

to the occurrence of abnormal DOA estimates. Firstly,

since the aperture of any partial array is less than that

of the original NLA, the �nite number of covariance av-

eragings (�) and the �nite signal-to-noise ratio (SNR)

together mean that situations will occur where MUSIC

fails to resolve poorly separated sources. This property

of MUSIC occurs for scenarios crossing the threshold

into the so-called pre-asymptotic domain, which exists

for every class of array geometry [6].

The second reason is speci�c to partial arrays. In

order to advance PA-MUSIC DOA estimation accuracy

well beyond the standardM -element ULA limit, it is in-

evitable that the EPNLA geometry is very sparse [5, 7].

Hence there will exist a substantial number of DOA sets

where the manifold vectors ai(�) are linearly dependent

[3, 8, 4] (ie. manifold ambiguities). Consequently some

of the individual partial array MUSIC pseudo-spectra

fi(�) are very likely to contain erroneous peaks. Since

di�erent partial arrays generally have di�erent manifold

ambiguity sets, we decrease the probability of a com-

bined ambiguous scenario for PA-MUSIC by involving

a large number of di�erent partial arrays (eg. n = 89 in

the above d55 example).

Nevertheless, if the majority of partial arrays share

any particular manifold ambiguity, then the outlier

probability can still be rather high, especially for low

SNR's. This becomes evident if we consider the m = 4

source scenario for d55, where according to Table 1 there

are only three partial arrays suitable for PA-MUSIC.

These partial arrays have the following co-sequences:

c1 = [3; 11; 4; 11]

c2 = [3; 11; 4; 14]

c3 = [3; 11; 15; 3]:

(8)

Table 2 presents four example ambiguity generator sets

[3] which are common to the above three partial arrays.

Each has an \ambiguity rank" [3] equal to four, mean-

ing that any four DOA's from a set create the MUSIC

pseudo-spectrum equivalent to the corresponding �ve-

source scenario. The worst thing is that since these par-

tial arrays only have �ve elements, the actual number

of main MUSIC maxima is much greater than �ve, due

to the sparsity of the partial arrays ci. (The order of

the root-MUSIC polynomial for these partial arrays is

equal to 29, 32 and 32 respectively.) For c1, the \ambi-

guity rank" is equal to three for ambiguity generator set

2. Thus if the signal scenario consists of m = 3 sources

from this set, then this manifold ambiguity could be re-

solved by PA-MUSIC. Nevertheless for �nite SNR, one

could still expect a high abnormal trial probability.

Since the main purpose of PA-MUSIC is initialisa-

tion for some further maximum likelihood (ML) re�ne-

ment procedure, its performance is measured here by

the probability of abnormal trials. We �rst investigate

a \super-resolution" scenario where the spatial frequen-

cies of the m = 3 sources are set at w � sin � =

sin �1 sin �2 sin �3 sin �4 sin �5

set 1 �1 0.4286 0.5714 0.7143 0.8571

set 2 �1 0.2727 0.4545 0.6364 0.8182

set 3 �1 0.5556 0.6667 0.7778 0.8889

set 4 �1 0.4667 0.6000 0.7333 0.8667

Table 2: Example ambiguity generator sets.



[�0:5; 0; �], where � = 0:05. This signal scenario is

far beyond the conventional beamwidth resolution limit

for the 16-element ULA d15 of wCBF = 2=a = 0:133.

Inverting this relation, the ULA apertures required to

resolve this separations by conventional beamforming is

approximately acrit ' 2=0:05 = 40. In [2] we demon-

strated the improved DOA estimation accuracy of d55
over d15 using GSS. Here we concentrate on showing

the reduction in abnormal DOA estimates using outlier

mitigation after GSS.

Our experiment consists of 500 independent Monte-

Carlo trials simulating independent realisations of

single-snapshot stochastic data for d55. For compari-

son with the standard spatial smoothing approach, we

also analysed the 16-element ULA d15 using forward and

backward averaging of 14-element sub-arrays.

Fig. 2 presents the sample probability of abnormal tri-

als for GSS (P0) as a function of SNR (dash-dot line d15,

dotted line d55). By the above CBF equation, almost

all partial arrays under consideration have a beamwidth

greater than the source separation � = 0:05; only the

d55 geometry has any partial arrays with aperture ex-

ceeding acrit ' 2=� = 40. Hence it is not surprising

that for this close-source separation, both arrays have a

high probability of abnormals, especially at low SNR's,

but that d55 is the best initialiser. Indeed the proba-

bility of correct initialisation is, as we expect, directly

related to the partial array aperture distribution, with

d15 performing poorly. Fig. 2 also shows the two source

scenarios � = 0:075 and � = 0:1 for comparison.
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Figure 2: Abnormal trial probability for d55, with (P1,

solid line) and without (P0, dotted line) outlier mitiga-

tion, for the probability P2 (dashed line), and for d15
without outlier mitigation (dash-dot line).

2 OUTLIER MITIGATION ALGORITHM

When the number of fully correlated sources is rather

small (m � M ), we propose that the following local

test be applied, where the full NLA snapshot is used.

Let �̂
(0)

k
(k = 1; : : : ;m) be the initial DOA estimates,

obtained via the PA-MUSIC technique. We de�ne the

�rst iterate to be

�̂
(1)

k
= argmin

�2[� �

2
;
�

2
)
aH (�)

"
IM �

F
(1)

k
y yHF

(1)

k

yHF
(1)

k
y

#
a(�)

(9)

where

a(�)=
h
1; exp

�
i�d2 sin �

�
; : : : ; exp

�
i�dM sin �

�iT
;

(10)

y 2 CM�1 is the single vector of observed sensor out-

puts,

F
(1)

k
= IM � ~A

(1)

k

�
~A
(1)H

k
~A
(1)

k

��1
~A
(1)

k
(11)

and

~A
(1)

k
=

h
a(�̂

(1)

1 ); : : : ; a(�̂
(1)

k�1); a(�̂
(0)

k+1); : : : ; a(�̂
(0)
m
)

i
:

(12)

If now����̂(0)
k
� �̂

(1)

k

��� < "� 1 8 k = 1; : : : ;m (13)

then the initialising set of estimates �̂
(0)

k
are passed on to

the next stage of local ML re�nement in the immediate

neighbourhood of �̂
(0)

k
. The threshold tolerance value "

is de�ned by the expected accuracy, as determined by

the appropriate Cram�er-Rao bound. The exact choice of

" is not critical, since in most cases abnormal estimates

are essentially randomly distributed.

If, however, at least one of the new estimates �̂
(1)

k
dif-

fers signi�cantly from its counterpart �̂
(0)

k
, then the set

�̂
(0)

k
is understood to contain one or more outliers. In

this case the DOA set �̂
(1)

k
can be iterated upon similarly

to Eqn. (9). If the new estimates �̂
(2)

k
satisfy the con-

vergence condition of Eqn. (13) then the outlier(s) have

been successfully removed, and the set �̂
(2)

k
is passed on

for ML re�nement; otherwise we continue iterating up

to some maximum number.

Thus in general, if the iterates �̂
(`)

k
(` = 0; 1; : : :) do

not converge to some stable point satisfying Eqn. (13),

the estimation trial is treated as unsuccessful; that is,

the algorithm detected the presence of outlier(s), but

could not correct the situation. If the iterates do con-

verge, then the algorithm should have detected and cor-

rected the outlier(s). If the �rst iterate is essentially

identical to the zeroth iterate, then the algorithm con-

�rms the non-existence of outliers.

The following example illustrates successful outlier

mitigation in the array d55 for w = [�0:5; 0; 0:05] and



` �̂
(`)

1 �̂
(`)

2 �̂
(`)

3

0 �0.5054 0.9331 0.3540

1 �0.4994 �0.0027 0.0505

2 �0.4999 �0.0012 0.0510

Table 3: Convergence of example iterates �̂
(`)

k
for d55.

30 dB SNR. Table 3 shows the progression of iterates �̂
(`)

k

over the three sources for the NLA d55, where " = 0:01.

We see that the initial DOA estimate set contains two

outliers, with a single reasonable �̂1 which is somewhat

close to the true value. Even in this very di�cult case,

the proposed outlier mitigation algorithm demonstrates

its ability to identify and to correct the outliers. Subse-

quent local ML re�nement is e�ective in then increasing

the DOA estimation accuracy close to the corresponding

Cram�er-Rao bound [2].

The solid line in Fig. 2 shows the overall abnormal

trial probability after outlier mitigation (P1) for the

same simulation experiment. We see that P1 is signi�-

cantly less than the original probability P0.

As well as simply comparing the new overall abnormal

trial probability against the original probability, the e�-

ciency of the proposed algorithm can be measured by its

failure probabilities: the mis-identi�cation of a normal

initial DOA set �̂
(0)

k
as abnormal (ie. diverging itera-

tions or converging to a stable but incorrect DOA set,

P2); failing to correct abnormal trials (ie. converging in-

correctly, P3); and abnormal trials which are abnormally

identi�ed but uncorrectable (due to diverging iterations,

P4).

The dashed line in Fig. 2 shows the probability P2
in our 500-trial experiment. Clearly mis-identi�cation

is very unlikely in this scenario. The other probabilities

P3 and P4 are conditional upon initially abnormal trials;

for moderate SNR, we encounter the asymptotic domain

where the number of such trials become statistically not

signi�cant, so that rather than plotting these conditional

probabilities, we merely mention that they were found

to be around 15{35% and 0{10% respectively for the

examined scenario.

Finally, to demonstrate the speci�c ability of our ap-

proach to resolve partial-array manifold ambiguity, we

consider two m = 4 source scenarios.

In the �rst trial, we begin with the �rst four DOA's of

the ambiguity set 1 from Table 2. Evaluation of the de-

terministic PA-MUSIC pseudo-spectrum then correctly

locates three DOA's, with one outlier. Ten random tri-

als of the outlier mitigation algorithm for this abnormal

set and 40 dB SNR each resulted in the outlier being

corrected.

In the second trial, we have chosen the \super-

resolution" scenario

w = f�1:000; 0:2727; 0:8182; 0:8572g (14)

as a variation of ambiguity set 2 in Table 2. In this case,

nine out of ten random trials were successfully able to

identify and correct the outlier.

3 SUMMARY

We have introduced an outlier mitigation algorithm

which signi�cantly decreases the probability of abnor-

mal trials for generalised spatial smoothing. The en-

tire approach to DOA estimation for a small number of

fully correlated sources (a problem arising, for example,

with multimode signals from a single source, or bear-

ing estimation and resolution of several radar targets

that cannot be resolved in range nor Doppler) is then

to apply PA-MUSIC followed by outlier mitigation, fol-

lowed by ML local re�nement. This overall procedure

is a signi�cant improvement on standard ULA and spa-

tial smoothing (for a small number of fully correlated

sources).
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