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ABSTRACT
A new approach is proposed for estimating the direction-of-
arrival (DOA) of the cyclostationary coherent signals
impinging on a uniform linear array (ULA) by utilizing the
spatial smoothing (SS) technique. In order to improve the
robustness of the DOA estimation by exploiting the cyclic
statistical information  sufficiently and handling ~ the
coherence effectively, we give a cyclic algorithm with
multiple lag parameters and the optimal subarray size. The
performance is verified and compared with the conventional
methods through numerical examples.

1. INTRODUCTION

To overcome the limitations of the available frequency
bands for future mobile communication systems, the
applications of array antennas have received much attention,
where a crux is the estimation of the number of the signals
of interest (SOI) and their direction-of-arrival (DOA). The
subspace algorithms such as multiple signal classification
(MUSIC) have found considerable prominence in direction
finding (DF) for their high resolution. However, the
performance and applicability of these methods are limited
in some communication applications, in which there are
more signals than sensors in the array, and/or the spatial
characteristics of noise and interference are unknown. As
most different types of modulated signals can have highly
distinct cyclic correlation functions with a known cycle
frequency, while stationary noise and interference exhibit no
cyclostationarity with the same one [1], more recently,
many cyclosationarity based methods have been proposed
to improve signal detection capability [2]-[6]. Unfortunately,
the multipath propagation is often encountered in a variety
of communication systems due to various reflections, with
the result that the signals are coherent and cyclic matrix
becomes singular, so that these cyclic techniques perform
poorly as the ordinary MUSIC method. For overcoming the
coherent sources problem, a preprocessing scheme such as
the maximum likelihood (ML) method or the spatial
smoothing (SS) approach [8] can be used. Although a cyclic
least-squares method was proposed in [7], it can be
interpreted as a cyclic ML DF method, where the ML
method involves the multidimensional search and results in
the more intensive computational burden.

Therefore the purpose of this paper is to investigate the
DOA estimation of the coherent signals in communications.
Firstly, a new cyclic approach is proposed to discriminate in
favor of the desired signals against noise and interference
impinging on a uniform linear array (ULA) by utilizing the
SS and improved spatial smoothing (ISS) techniques [8],
(10]. Secondly, the choice problems of the lag parameter
and subarray dimension are considered. For improving the
robustness of the DOA estimation, we give an algorithm
with multiple lag parameters and the optimal subarray size
to exploit the cyclic statistical information sufficiently and
to handle the coherence effectively. The performance of the
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proposed method is demonstrated and compared with the
conventional methods through numerical examples.

2. PROBLEM STATEMENTS

2.1 Data Model

Here we consider that p narrowband source signals
impinging on a ULA, which consists of M identical
isotropic sensors with separating distance D, then the data
xi(n) received by the ith sensor is given by

x,(n)= ﬁs,‘(n)e'w“‘l"' +w,(n), for i=12,---.M D
=]

where w, =2xf.. 1, =(D/c)sing,. Here 6, is the direction
of the signal s,(n) measured relative to the normal of the
array with 6, =6, for k =/, and f and c are respectively
the carrier frequency and the speed of propagation. The
additive noises {w,(n)} are assumed to be cyclically
uncorrelated with themselves and with other source signals
at the same cycle frequency a, which can be determined
from the carrier frequency and baud rate [1].

We also assume that only p, sources are self-cyclically
correlated with the cycle frequency « and that the first q
signals are coherent signals expressed by

si(n) = B,s,(n), for k=12..q Q)

where 1sg=<p,<p, and g, is the multipath coefficient
which represents the complex attenuation of the kth signal
with respect to the first signal s,(n) with g, =0 and g, =1.
Without loss of generality, we assume g = p, for simplicity
of analysis. and which is known or estimated a priori [12].

From (1), we have a vector form to express the obtained
sensor data as

x(n) = A(0)s(n) +w(n) (3)
where  x(n) = [x,(n).x.(n).-.xy (M), A0)=[a(6,).a(8-), -,

a(6,)], s(n)=|[s,(n).s:(n).-.s5,(n)]", w(n) =[w,(n),w:(n), -
W], and a(g, )= [Lewe - ermin i

2.2 Degradation of Cyclic MUSIC

From the definition of the cvclic correlation function [1],
and under the assumptions for the source signals and noise,
we have the cyclic array covariance matrix (CACM) as

R () = (x(n+1/2)x"(n - 1/2)e-127r)
= A(O)R:(1)A4" (6) 4)

where  <->=lim,.,(I/N)S.(), H denotes Hermitian
(complex conjugation) transpose, and R (t) is the cyclic
source covariance matrix (CSCM) which remains as
nondiagonal so long as the source signals are at most
partially correlated. In that case, the rank of CSCM Ry (1)
still is p,, if the eigenvalue decomposition (EVD) of
R (z) is given by

Ri(t)=U,A, Ul (3)



where U" = [unlv"'~unM]’ A" = diag(}"ril”"v)'n.w)y )L,,| 22
Aoy Z Ao, = =R =0, {A,} and {u,} are respectively
the eigenvalues and the corresponding eigenvectors, and the
noise subspace is spanned by the eigenvectors {Uopoars -,
u,y}. From the properties of EVD, then we have

a6 )u, =0, for i=p, +1.--\M (6)

Hence the cyclic MUSIC method from (6) will give high-
resolution DOA estimation of the desired signals, since the
contributions of the additive noise and interfering signals
vanish in (4) by selecting the cycle frequency «
appropriately. However, when the source signals are
coherent as in (2), then the CSCM R:(z) in (4) becomes
singular, i.e. rank(R“(t))=1. so that it will be impossible to
estimate any true arrival angle 6, from the relation in (6)
by using the cyclic MUSIC. In contrast to the cyclic least-
squares method in [7], in this paper., we propose a new
cyclic method for the DOA estimation of the
cyclostationary coherent signals.

3. DOA ESTIMATION OF COHERENT SIGNALS
3.1 SS-Based Cyclic MUSIC

Firstly we consider a new cvclic DOA estimation of the
cyclostationary coherent signals by utilizing the SS
technique [8], [10], which is a spatial averaging
preprocessing that groups the total array into overlapping
subarrays and then forms the average of the subarray
covariance matrix to decorrelate the coherent signals. By
dividing the total array into L overlapping subarrays with
m sensors (mz p, +1), where L =M -m +1, then the vector
x,(n) of reccived data in the !th forward subarray can be
expressed by

x,(n)=A,(0)D''s(n)+w,(n), for I=12,---,L (7
A.(0)=[a.(6,),

wi(n) =[w(n),
.e’“‘“‘”’"’” T.

where x,(n) =[x, (n).x,. (n) - xp (W],
a,(0:),.a,(6,)], D=diag(er - ¢rm),
Wi (n), - Wy, (n)]7. and a,(8,)=[lewr .-

From (2) and (7), we can obtain the CACM for the /th
subarray as

R (1)= (x,(n +1/2)x/!(n - r/2)€~/:.1un>

= A,(0)D" R (x)(D'' )" Al (6) (8)

where  Rr(r)=BR*(t)B", Re(r) is the cyclic  auto-
correlation  function (CACF) of the signal si(n),
B=[B,B:,.68,] and B, =0 for k=p, +1---,p. Hence the
spatial smoothed cyclic covariance matrix (SSCCM) Re(T)
of the subarrays is given by

Re () =%I';R:,,(r)=Am(eﬁ"(r)A;'m) 9)

where R*(t)=R:(r)CC"/L, C=BWY, B = diag(8,,---,8,),
Y=y, p, ), and g, =[Lew . gmatl-im |7

Due to 8, =0 for £=1,--,p, wherecas g, =0 for k=p,
+L---,p, the ranks of the diagonal matrix B and the
Vandermonde matrix ¥ are given by rank(B)=p, and
rank(¥) = min(p, L), respectively: hence, we have rank(C) =
min(p,,L) for the pxL matrix C. With the result that if
L=z p,, we can prove that rank(R¢(7))= min(p,..L)=p,; Le.
the smoothed CSCM Re(r) has the same form as the
CSCM Re(r) in (4) regardless of the coherence of the
source signals. Therefore the eigenvectors {u,} of the
matrix R7(r) in (9) are orthogonal to the actual array
response vectors {a(¢,)}. That is

al(0u, =0, fori=p,+1---.m (10)
Thus from the positions of peaks of the spectrum given by

[0 P — (11)

3 la@uf

1mpg +l
where  a(6) =[l,e/*r .- ernn-ic )7 and T =(D/c)sinf, the
DOA {6,} of the desired signals can be estimated.

3.2 ISS-Based Cyclic MUSIC

For improving the performance of the SS-based subspace
algorithms, the forward-backward SS technique has usually
been used [9], but it is easy to see that any information in
the cross correlations of the subarrays is still ignored. Here,
by using the cross subarray correlations between the /th
and /’th subarrays in (7), we present a new cvclic MUSIC
based on the improved SS (ISS) scheme [10], where the
improved spatial smoothed cyclic covariance matrix
(ISSCCM) &¢(z) is given by

~ A ~

Re(@) =13 SRy (R (0) = AR (02(0)  (12)
where E,"(‘r)-(l/L)Z,"_,D"‘S"(r)(D"')”, S“(t)=2,"_lR,"(t)
(D) A7 (6)4,(6)D"'Re(r) = Ri(7)B| ¢ |7 B”R:(v). and the
Lmx1 vector ¢ is given by c=[B"A!(0).8"D" 4! (8),
.,_,ﬂll(Dl.—l )I[A':I(g)}ll .

Applying the analysis for SS-based cvclic MUSIC
algorithm, it is obvious that rank(S“(1)) = p., SO we can
prove easily that the ranks of the smoothed matrices Re(T)
and R¢(z) in (12) equal p, if L=p,. It is clear that the
procedure in (10) and (11) can be applied to estimate the
actual DOA of the desired signals.

4. IMPROVED CYCLIC ESTIMATION

4.1 Parameter Determination

In the above section, the SS and ISS-based cyclic DF
methods are proposed; however, the choices of the
statistically significant lag parameter ¢ and the optimal
subarray size m are very crucial.

As the cyclic correlation function is dependent on lag
[1], if the cyclic correlation of one source is zero or
insignificant for a given t, then this signal will be not
resolved. The choice of the optimal lag parameter is very
important, specially, if one wants to detect different desired
signals just by varying the parameter of cycle frequency. No
value of lag parameter 7 is specified for use in the cyclic
MUSIC and cyclic ESPRIT [2]. Here we propose the use of
multiple lag parameters as a sensible choice to exploit the
cyclic statistical information sufficiently. As the cyclic
correlation function is usually symmetrical about =0,
now we choose 7 as t = ~T,---,-1,01,---.T, then the spatial
smoothed cyclic matrices in (9) and (12) can be modified
respectively as

= 1

a —
X

I — -~ 1 T o~
= Re and R¢ = S R 13
27'+1:-Z-r © 2T +1.%7 () (13)

where 7 is a positive integer, which is chosen so that
Rg(T)=0 for |z|>T.

In addition, improving the decorrelation of the SS
technique is obtained at the cost of a reduction in array
aperture, which usually causes the degradation in DOA
estimation. A trade-off between goodness of decorrelation
and potential resolution of DOA estimation is required.
Although the performance of the SS scheme was widely
analyzed, it is difficult to derive a general analytical
expression of the optimal subarray size, which provides the
best effectiveness of the spatial smoothing, because it



generally depends on the source coordinates and the relative
source phases. As the goal of the SS technique is to increase
the distance between the signal and noise subspaces
cigenvalues, here we determine the optimal subarray size by
maximizing the eigenvalue distance D, (m) [11],

My =max{D,(m)}, for m=p, +1,--- M-1, (14)

where D,,(m)=4, -2, ., and {2} are the eigenvalues of
the m xm modified matrix & or R in (13).

4.2 DOA Estimation Algorithm

The matrix Ry, (t) in (12) is just a submatrix of the CACM
R:(t) in (4), and it can be formed simply and directly as the
mxm block matrix along the 2L -1 diagonal of R¢ (7). On
the analysis basis as mentioned above, we can propose an
algorithm for DOA cstimation of coherent signals based on
SS or ISS technique as follows.

Step 1: Calculate the estimates of the CACM R:(t) in (4)

for t=-7.---1.0.,---,T from the finite N samples
x(n) as
k;'(r) . \fx(n +T)x(n)e2en - for T=20(15)

7
n=l)

o mar vs for T<0(16)

1
x(n)x”(n - T)e—/ﬁxun y

nel)

Ri(r)=

Step 2: Set m=p,+1--M-1 and form the mxm
estimated submatrix &?, (r) from the estimated CACM
Ry (1) in (15) and (16) for 11" =1.2,---,L.

Step 3: Calculatc the estimate of the mxm modified
spatial smoothed cyclic matrix &¢ or &¢ in (13) as

72 P 1 7 2

o 2 R g SRk@a7)
where the estimates of the SSCCM &« (t) and ISSCCM
R¢(7) are obtained from (9) and (12).

Step 4. Calculate the eigenvalue distance for the m xm
estimated matrix in (17) as

= 1

a

b\" (m)= /, - im,,

where {3} arc the eigenvalues of the matrix z¢ or Re.
Step 5: Determinc the optimal subarray size m,, as the
value of {p, +1L--,M-1} for which D, (m) is
maximized.
Step 6: Estimate the DOA of the desired signals from the
positions of peaks of the spectrum given by

() —— (18)

> i "
S la"(0)i|
1=p, ]
where {4,} are the eigenvectors of the M, x m,, matrix
R or ge.

5. NUMERICAL EXAMPLES

The ULA has M =8 sensors with half-wavelength spacing.
The sensor outputs are collected at the rate f, = 4MHz, the
speed of propagation is ¢ =3x10°m/s, the length of samples
is N =1024, and the lag parameter T is chosen as T =10.
The additive noise is assumed to be complex white noise
with the same variance o3.

Example 1: Heavy Loading Case

We consider a scenario that the total number of arriving
signals is larger than that of sensors with SNR’s are 10dB,
where p=9 and p, =3. The reference signal of the BPSK

1 source arrives from -40- with 1MHz baud rate (a =0.23),
and it undergoes multiple reflection and results in two
additional coherent arrivals along -15" and 350 with the
multipath coefficients as g. =-045+;034 and B, =
0.29 +j0.2, respectively. The six interfering signals, i.e.
BPSK 2 and BPSK 3 impinge from 20° and -32.5° with
0.8 and 1.33MHz baud rates (¢ =02 and 033); AM 1 and
AM 2 come from 10° and -53° with 0.3 and 0.18MHz
carrier frequencies (a =015 and 0.09); FM | and FM 2
signals arrive from 28 and -4¢ with 0.04 and 0.1MHz
carrier frequencics (a = 0.02 and 0.05), respectively.

Comparison of Distances between Signal and Noise Subspaces
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Fig. 1 The determination of the optimal size of the
subarrays in the SS-based method in Example 1.
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Fig. 2 The comparison of DOA estimation by using the
proposed cyclic algorithms, the SS-based MUSIC and
cyclic MUSIC methods in Example 1.

For employing the presented SS-based cyclic approaches,
we have to choose the optimal subarray size, which gives
the good effectiveness of decorrelation and accuracy in
DOA estimation. From Fig. 1, it is shown that the optimal
subarray dimension can be decided as m,, =3, which gives
the maximum distance between the signal and noise
subspaces. It is known that the conventional MUSIC is
impossible to estimate the DOA as the signal number is
greater than that of the sensors. For verifying the
performance of the proposed SS and ISS-based methods, 50
trial runs are performed with m,, =5 and a=0.25, and the
averaged spatial spectra are illustrated in Fig. 2, where these
results are compared with the conventional SS-based
MUSIC and cyclic MUSIC (with @ =0.25 and multiple 1)
algorithms. Due to the more impinging signals and strongly
adverse interference environments where the signal to
interference plus noise ratio (SINR) is less than —5.5dB or
the coherency of SOI, the resolution of the ordinary SS-



based MUSIC and cyclic MUSIC methods decreases and
fails completely. However the proposed approach is
superior and has no problem in resolving the coherent
source, and the gain in detection and accuracy can be
obtained by applying the presented SS and ISS-based cyclic
algorithms.
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Fig. 3 The comparison of DOA estimation for the BPSK 2
coherent source in Example 2.
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Fig. 4 The comparison of DOA estimation for the BPSK 3
coherent source in Example 2.

Example 2:  Two Coherent Sources Case
Here we illustrate the behavior of the presented approach in
the two coherent sources case, where the two reference
signals from the BPSK 2 and BPSK 3 sources come from
the directions 15¢ and -27.5° with 0.8MHz and 133 MHz
baud rates (a = 0.2 and 0.33), and SNR’s arc assumed to be
10dB. There are two additional coherent arrivals for each
source. The pair of the BPSK 2 source has the angles of
arrival of -14¢ and 53 with the multipath coefficients
-0.45+/0.34 and 0.3-,0.7, and the pair of the BPSK 3
source comes from the directions -40 and 40 with the
muitipath coefficients 0.4 +j0.8 and 0.5- 0.6, respectively.
For detecting the two coherent pairs, 50 trials are run with
my, =5, and a=02 and 033, respectively, the averaged
spatial spectra of the proposed method are demonstrated in
Fig. 3 and 4, and compared with the traditional SS-based
MUSIC and cyclic MUSIC (with multiple 7, and « =02
and 0.33, respectively) algorithms. In this case, the ordinary
SS-based MUSIC method has a problem in resolving the
two coherent sources. Due to the close impinging angles of
two coherent sources, the peaks of the SS-based cyclic
MUSIC spectra give some wrong arrival estimates in the
region of -14° to -40¢. However, since the information of
the cyclic cross correlations of the subarrays is exploited

sufficiently, the ISS-based cyclic MUSIC algorithm is still
superior and has a better performance. All three directions
of each coherent source can be clearly identified and the
improvement of the ISS-based algorithm in terms of
resolvability is also clarified.

6. CONCLUSIONS

In this paper, a new approach for DOA estimation of
cyclostationary coherent signals was proposed by applying
the SS technique. For attaining the robust performance of
DOA estimation, the SS and ISS-based algorithms were
improved by using the multiple lag parameters and the
optimal subarray size to exploit the cvclic  statistics
sufficiently and handle the coherence effectively. The
effectiveness of the proposed algorithm was illustrated and
compared with the ordinary SS-based MUSIC and cyclic
MUSIC methods through numerical examples. It was
clarified that the presented method can provide satisfactory
performance, even in strongly adverse interference
environments, and give good accuracy even when the
number of impinging signals is larger than that of the array
Sensors.
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