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ABSTRACT

Two methods of the orthogonal spectra extrapolation

problem are considered in this paper. Both solutions are

based on the application of multi-valued neural element

as a �lter and as an extrapolator. The �rst method

consist of approximation of the spectra in the higher

frequency part using an iterative approximation and

multi-valued non-linear �ltering. The second method

is reduced to the prediction of the spectral coe�cients

corresponding to the higher frequency part using pos-

sibility of MVN to predict time-series. Application of

the proposed methods to solution of the super-resolution

problem are presented.

1 INTRODUCTION

Multi-valued non-linear �lters have been introduced in

[1], and then have been applied in [2] to solution of

the noise reduction and frequency correction problems.

Multi-valued �lters are closely related with multi-valued

neurons introduced in [3].

We will consider here two approaches to extrapola-

tion of the orthogonal spectra. This problem is very

important, and some approaches to its solution exist,

especially for 2-D spectrums and signals [4,5]. The im-

portance of the problem is evident from fact that ex-

trapolation of the spectrum always is better than inter-

polation of the signal in spatio-temporal domain.

One approach which we propose here is a signi�cant

improvement of methods proposed in [4,5]. They are

based on the approximation of the higher frequency part

of Fourier spectrum via special iterative procedure. We

will derive here a similar technique for Cosine and Walsh

spectrums which are much simpler from the computa-

tional point of view. To obtain the most precise approxi-

mation of spectrum we will use a non-linear multi-valued

�ltering.

Another approach is based on the possibility of multi-

valued neuron (MVN) to implement a time-series pre-

diction [6]. Supposing that each spectral coe�cient is a

function of some of the lowest ones, it is possible to train

MVN to implement this function as a mapping between

inputs and output of the neuron, and then to predict

unknown spectral coe�cients in the higher frequency

part.

2 MULTI-VALUED FILTERS AND MULTI-

VALUED NEURONS

Multi-valued neuron (MVN) [3] is the neural element

which performs a mapping between n inputs and one

output described by a multi-valued (k-valued) function

f(x1; :::; xn) by the following way:

f(x1; :::; xn) = P (w0 +w1x1 + :::+ wnxn); (1)

where x1; :::; xn are variables of the performed function

(neuron inputs), and P is the following activation func-

tion:

P (z) = j; if 2�(j + 1)=k > arg(z) � 2�j=k; (2)

where j = 0; 1; :::; k� 1 are values of the k-valued logic,

z = w0+w1x1+ :::+wnxn is the weighted sum, arg(z)

is the argument of the complex number z:

Two-dimensional multi-valued �ltering (MVF) in spa-

tial domain is de�ned by following equation [1]:

B̂ij = P (w0 +
X

i�n�s�i+n; j�m�l�j+m

wslYsl); (3)

where Ysl are the signal values from a local window

around ij-th pixel (in a complex form obtained by trans-

formation �Bsl = exp(i2�B=k) = Ysl; where Bsl is the

integer signal value, k is the value of k-valued logic, it

has to be equal for gray-scale images to number of the

gray levels, i is an imaginary unit), i; j are the coordi-

nates of the �ltered pixel, n�m is a �lter aperture, wsl

are the �lter's coe�cients (complex-valued in general),

P is a non-linear function (2), which is an activation

function of the multi-valued neuron.

3 APPROXIMATION OF THE SPECTRUM

USING MULTI-VALUED FILTERING

The solutions of spectrum extrapolation problem which

have been proposed in [4,5] are based on the two funda-

mental facts:



1) the two-dimensional Fourier-image of a spatial-

limited function is an analytic function in frequency do-

main;

2) if an analytic function in frequency domain is de-

�ned exactly on the limited subdomain, it is de�ned on

all domain, where it is analytical.

The iterative procedures which have been proposed

in [4,5] are directed to the simultaneous restoring of

unknown part of spectrum corresponding to the high-

est frequencies, and values of signal in spatial domain.

Computer implementation of both algorithms is not dif-

�cult, but they have some disadvantages. The starting

zero-values of spectral coe�cients and signal values can

not be recognized as a good solution. Such a method

supposes in advance that the restored part of a spec-

trum will be rather smooth, and the signal values in the

restored domain will not be so close to the ideal values.

We would like to propose here a solution of the same

problem, which will be based on the same background,

but will be free from the disadvantages of previous solu-

tions. So, we will provide the similar iterative procedure,

but with the following signi�cant di�erences:

1) the starting values of the restoring spectrum and

signal will not be zero-valued, or constant;

2) a �nal correction of the spectrum and signal will

be realized by non-linear multi-valued �ltering in spatial

domain, which will be implemented using cellular neural

networks;

3) not only Fourier, but Cosine and Walsh transforms

will be used, moreover they are preferable because of

their computational e�ciency.

Let f(x; y) be a discrete n � n image (without loss

of generality), de�ned on the spatial subdomain ~A �

A. The function F (u; v) = �[f(x; y)]; u; v 2 ~B =

f0; 1; :::; n� 1g2; where � is the two-dimensional (sepa-

rable) Fourier, or Cosine, or Walsh (ordered by Walsh)

transform, is the spectrum of the signal f: The prob-

lem is an extrapolation of the function F to the domain

u; v 2 B = f0; 1; :::; n�1; n; :::;2n�1g2. In other words,

it is evaluation of the values of the image f(x; y) of a

2n � 2n sizes on the whole domain A: So, it is always

a dual problem: extrapolation of the spectrum, and in-

terpolation of the image. Let us suppose that

g(x; y) =

�
f(x; y); if (x; y) 2 ~A;

s(x; y); if (x; y) 2 A n ~A;
(4)

where s(x; y) is uniform noise with the same mean value

that f(x; y); and a small dispersion. We will use the

function g de�ned by (4) as a starting approximation

in our iterative and recursive algorithm. So, g(x; y)

should be considered as f(x; y); corrupted by the ad-

ditive uniform noise, moreover, we know in such a case,

that f(x; y) is corrupted within the domainAn ~A only. It

means that our problem may be formulated as a prob-

lem of a noise reduction and further correction of the

highest frequencies. We will use the multi-valued �l-

ters described in previous Section to remove the noise,

and then to amplify the highest frequencies. First of

all we have to obtain a more precise approximation of

our resulting signal than (4). We will obtain it from

(4) taking into account that the exact values of the sig-

nal f(x; y) on the subdomain ~A, and therefore, of its

spectrum F (u; v); u; v 2 f0; 1; :::; n� 1g are known.

Let us build the following iterative and recursive pro-

cess. Let f1(x; y) = g(x; y) be the starting approxima-

tion of the signal. Then

~F (u; v) = �[f1(x; y)]; (5)

and

F1(u; v) =

�
F (u; v); (u; v) 2 ~B;
~F (u; v); (u; v) 2 B n ~B;

(6)

will be the starting approximation of the spectrum. Ev-

idently, for the n-th approximation we have:

Fn�1(u; v) =

�
F (u; v); (u; v) 2 ~B;

�[fn�1(x; y)]; (u; v) 2 B n ~B;
(7)

gn�1(x; y) = ��1[Fn�1(u; v)]; (8)

fn(x; y) =

�
f(x; y); if (x; y) 2 ~A;

gn�1(x; y); if (x; y) 2 A n ~A:
(9)

So, the equations (5)-(9) de�ne the iterative process ob-

taining the best approximation for the signal f(x; y) and

its spectrum F (u; v): Since the discrete functions are not

analytical it is impossible to obtain a precise proof of the

convergence for process (5)-(9). Despite this fact exper-

iments have shown that such a process is stabilized after

not more than 6-7 steps, and we will obtain the follow-

ing:

fn(x; y) =

�
f(x; y); if (x; y) 2 ~A;

f(x; y) + ~s(x; y); if (x; y) 2 A n ~A;
(10)

where ~s(x; y) is an additive noise. According to the

equation (10) ~f (x; y) = fn(x; y) contains an additive

noise in subdomain A n ~A: The MVF will be the best

way for de-noising since it removes noise with a maximal

preservation of the useful signal (of image boundaries)

[1, 2], and it is possible to use the MVF not only for the

noise removal, but also for the high frequencies ampli�-

cation [1, 2], which is very important for sharpening of

the smallest image details and boundaries. We can use

the following weighting template for the implementation

of �lter (1) [1]:

W0 = C; W =

0
@ 1 1 1

1 w22 1

1 1 1

1
A ; 1 � w22 < 10:

Let
~~f(x; y) will be the result of the �ltering the signal

~f (x; y) = fn(x; y): We can obtain more close approxi-

mation for f(x,y) by the following way:

f̂(x; y) =

(
f(x; y); if (x; y) 2 ~A;
~~f (x; y); if (x; y) 2 A n ~A:

(11)



Finally, we have to correct the high frequencies of the

signal f̂ (x; y), since the high frequency domain coef-

�cients have been smoothed by �ltering. The multi-

valued �lter (1) implemented by the following weighting

template [2]

W =

0
@�0:5 �0:5 �0:5

�0:5 G �0:5

�0:5 �0:5 �0:5

1
A ; 6 � G < 16;

will be used to make such a correction of the signal

f̂ (x; y) which has been obtained by (10). Let
^̂
f (x; y)

is a result of such a correction. To complete the process

we have to do the following:

f�(x; y) =

(
f(x; y); if (x; y) 2 ~A;
^̂
f (x; y); if (x; y) 2 A n ~A;

(12)

where f�(x; y) is the �nal approximation for the 2n�2n

image f(x; y) de�ned on the domain A. Evidently, it is

possible to repeat this process, de�ned by the (4)-(12),

and to obtain the approximation f�2 (x; y) for a 4n� 4n

image, and so on.

4 PREDICTION OF THE HIGHEST FRE-

QUENCY COEFFICIENTS ON MULTI-

VALUED NEURON

Let us take a signal f (its discrete values f1; f2; :::;

fi; fj; :::; fN) de�ned on the equal intervals (we will

consider the one-dimensional description for simplicity).

Our problem is to evaluate values

fi+s; i = 1; :::; N ;

i + s < j; s = 1=p; 2=p; :::; (p � 1)=p; p 2

f2; 4; 8; 16; :::g: For example: n = 4; we have to obtain

fi+0:25; fi+0:5; fi+0:75 between fi and fj . We would like

to propose here approach which is based on application

of the MVN as time-series extrapolator (predictor) [6].

So, solution of the considered problem is reduced to the

following steps:

1) Evaluation of the spectrum (Fourier, Cosine,

Walsh) of the signal f : Sf = (s1; :::; sN);

2) Supposing that each spectral coe�cient is a func-

tion of the q lowest ones, it is possible to train MVN to

implementmapping that is described by the function g;

3) Extrapolation of the spectrum: ~Sf = (s1; :::; sN;

~sN+1; :::;~spN) by prediction of the coe�cients corre-

sponding to the highest frequencies;

4) Evaluation of the pN - dimensional inverse trans-

formation and obtaining of the needed values of the sig-

nal f:

5 SIMULATION RESULTS

Figures 1-4 present the examples which illustrate both

solutions. Fig. 1 contains the original 256� 256 image

"Lenna". Fig. 2 contains the starting approximation of

the further 512�512 image (f1(x; y) = g(x; y), see (4) ).

Fig. 3 contains 512� 512 image obtained from original

one by the iterative procedure (4)-(12) (four iterations),

and approximation of the Cosine spectrum using multi-

valued �ltering (for reduction of the rest of noise and

high frequency correction). Fig. 4 contains 512 � 512

image obtained from original one by prediction of the

Walsh (ordered by Walsh) spectrum coe�cients corre-

sponding to the highest frequencies domain on multi-

valued neuron.

6 CONCLUSIONS

Both approaches of the spectra extrapolation problem

presented here are better than previous solutions pro-

posed in [4,5]. Both are more e�ective for extrapolation

of the spectra of a size 512� 512 and higher. For exam-

ple, standard deviation between the original 512 � 512

"Lenna" and images respectively from Figures 3 and 4

is equal to 2.7 and 3.5. For extrapolation of the smaller

spectra the results are successful from visual point of

view, but standard deviation is much higher.

Mutual comparison of both approaches (spectra ap-

proximation by multi-valued �ltering, and by predic-

tion of the highest-frequency domain coe�cients on the

MVN) shows that both solutions are e�ective. An im-

plementation of prediction of the spectra coe�cients is

simpler for 1-D signals (learning process may be orga-

nized by simpler way than for 2-D case). An approxima-

tion of the spectra via multi-valued �ltering is preferable

for images.
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Figure 3: Interpolation by the cosine spectrum

Figure 4: Interpolation by the Walsh spectrum


