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ABSTRACT

A family of discrete-time linear-phase nearly orthogonal
wavelet banks is introduced. These wavelet banks are in-
termediate cases between orthogonal wavelet banks having
nonlinear-phase impulse responses and biorthogonal banks
having linear-phase impulse responses. For these banks, the
wavelet and scaling functions are made very regular and the
wavelet function has several vanishing moments. Strightly
speaking, the proposed �lter banks are not real wavelet banks
in the sense that there are negligible aliased terms and a
very small reconstruction error for the unaliased component.
Several examples are included showing the usefulness of the
proposed banks in signal processing applications.

1 Introduction

Discrete-time �nite impulse response (FIR) wavelet banks
are usually constructed on the basis of perfect-reconstruction
two-channel FIR �lter banks having special properties [1].
This system consits of the analysis part and synthesis
banks with the analysis and synthesis banks having lowpass-
highpass �lter pairs H0(z) and H1(z) and F0(z) and F1(z),
respectively. In the case of lossless coding, the output signal
y(n) is a delayed version of the input signal x(n), that is,
y(n) = x(n�N) (N is an odd integer) if

F0(z) = H1(�z); F1(z) = �H0(�z) (1a)

and

H0(z)H1(�z)�H0(�z)H1(z) = 2z�N : (1b)

There are two conventional solutions satisfying these cri-
teria, namely orthogonal and biorthogonal banks. In both
cases, the sum of the orders of H0(z) and H1(z) is 2N . For
orthogonal banks, the orders of both H0(z) and H1(z) are
N and

H1(�z) = z
�N

H0(z
�1): (2)

In this case, H0(z) and H1(z) cannot possess exactly linear
phase performances. In the biorthogonal case, H0(z) and
H1(z) can be synthesized such that the impulse responses of
H0(z) and H1(z) are symmetric and antisymmetric, respec-
tively. These �lters have to be designed to form a lowpass-
highpass �lter pair such that the sum of their orders is 2N
and they satisfy the condition of Eq. (1b). The wavelet banks
based on the use of these two-channel �lter banks are usu-
ally made very regular with several vanishing moments by
forcing H0(z) and H1(z) to have several zeros at z = 1 and
z = �1, respectively.

The purpose of this paper is to design nearly orthogonal
two-channel banks such that H0(z) and H1(z) have linear-
phase responses. The price paid for the linear-phase per-
formances is a small reconstruction error for the unaliased
component and small aliasing errors for the resulting wavelet
bank. These errors are tolerable in many applications where
the perfect reconstruction is not needed because of the cod-
ing of the wavelet coe�cients. Several examples are included
illustrating the superiority of the proposed wavelet banks
over other existing orthogonal banks in applications where
the phase linearity is of importance.

2 Proposed Family of Wavelet Banks

This section introduces the proposed family of nearly or-
thonal linear-phase wavelet banks and shows how to optimize
them.

2.1 Starting-Point Two-Channel Filter Bank

For the starting-point two-channel �lter bank, it is assumed
that

H0(z) � G(z) =
p
2 bG(z); (3a)

where

bG(z) = E(z)

�
1 + z�1

2

�M
(3b)

with M being odd and

E(z) =

2LX
n=0

e(n)z�n; e(2L� n) = e(n): (4)

The impulse response of G(z) is thus symmetric and the or-
der of G(z) is N = 2L +M that is an odd number. The
corresponding length, N + 1, is an even number. Further-
more, it is assumed that

H1(z) = H0(�z) = G(�z) =
p
2 bG(�z); (5a)

F0(z) = H1(�z) = G(z) =
p
2 bG(z); (5b)

and

F1(z) = �H0(�z) = �G(�z) = �
p
2 bG(�z): (5c)

This two-channel �lter bank is a special case of the banks
proposed by Johnston [2] in the sense that all the zeros of
H0(z) lying on the unit circle are forced to be located at
z = �1.
In this case, the z-transforms of the input and output

signals x(n) and y(n) are related through

Y (z) = T (z)X(z); (6a)



where
T (z) = [ bG(z)]2 � [ bG(�z)]2: (6b)

The corresponding frequency response is given by

T (ej!) = e
�j(M+2L)!

R(!); (7a)

where

R(!) = [S(!) cosM(!=2)]2 + [S(� � !) sinM(!=2)]2 (7b)

with

S(!) = e(L) + 2

LX
n=1

e(L� n) cosn!: (7c)

2.2 Filter Optimization

Given M and L, the adjustable parameters e(n) for n =
0; 1; � � � ; L are desired to be optimized to be minimize

� = max
!2[0; �]

jR(!)� 1j (8a)

subject to

e(L) + 2

LX
n=1

e(L� n) = 1: (8b)

This means that the reconstruction error is minimized in
the minimax sense subject to the condition that at the zero
frequency this error is zero. For the optimization purposes,
we have modi�ed the second algorithm proposed by Dutta
and Vidyasagar in [3].

2.3 Properties of the Resulting Wavelet Bank

For the K-stage wavelet bank, the input-output relation can
be shown to be

Y (z) =

2K�1�1X
l=0

T
(K)

l (z)X(zej2�l=2
K�1

); (9)

where for K = 1 and K = 2, respectively,

T
(1)

0 (z) = [ bG(z)]2 � [ bG(�z)]2 (10)

and

T
(2)

0 (z) = [bG(z)]2T (1)

0 (z2)� z
�2N [ bG(�z)]2 (11a)

and
T
(2)

1 (z) = bG(z)bG(�z)[T (1)

0 (z2)� z
�2N ]: (11b)

In the K > 2 case, the T
(K)

l (z)'s can be generated by using
the following recursion formulas:

T
(k)

0 (z) = [ bG(z)]2T (k�1)

0 (z2)�z�2(2
k�1

�1)N [ bG(�z)]2; (12a)
T
(k)

2k�2
(z) = bG(z)bG(�z)[T (k�1)

0 (z2)� z
�2(2k�1�1)N ]; (12b)

and for l = 1; 2; � � � ; 2k�2 � 1;

T
(k)

l (z) = bG(z)bG(zej2�l=2k�1)T (k�1)

l (z2); (12c)

T
(k)

l+2k�2
(z) = bG(z)bG(zej2�(l+2k�2)=2k�1)T

(k�1)

l (z2): (12d)

From the above equations, it is seen that in addition to

the unaliased term T
(K)

0 (z)X(z), there are 2(K�1)�1 aliased

terms. Among then, the term T
(K)

2K�2
(z)X(�z) has been ob-

served to be the dominating one.

3 Optimized Filter Banks

The terms T
(K)

0 (z)X(z) and T
(K)

2K�2
(z)X(�z) are of great im-

portance when designing a K-level nearly orthogonal linear-

phase wavelet bank. Both T
(K)

0 (z) and T
(K)

2K�2
(z) are linear-

phase FIR �lter transfer functions of order 2(2K�1)N . The
maximum reconstruction error for the unaliased component
and the maximum aliased error are, respectively, given by

�
(K) = max

!2[0; �]
jT0(ej!)� e

�j(2K�1)N! j (13a)

and

�
(K) = max

!2[0; �]
jT (K)

2K�2
(ej!)j: (13b)

It has turned out that the following cases result in very
small values for �(K) and �(K) also for a large value of K:
M = 3, L = 2, N = 2L +M = 7; M = 3, L = 3, N = 9;
M = 5, L = 3, N = 11; M = 5, L = 4, N = 13; M = 7,
L = 4, N = 15; M = 7, L = 5, N = 17; M = 9, L = 4,
N = 17; M = 9, L = 5, N = 19; M = 11, L = 5, N = 21;
and M = 11, L = 6, N = 23.

Here, we consider in more details the M = 7 and L = 5
case. In this case, the impulse response coe�cients of H0(z)
are given by

h(0) = h(17) = 0:00077561; h(1) = h(16) = 0:00091432;

h(2) = h(15) = �0:00728739; h(3) = h(14) = �0:00224474;

h(4) = h(13) = 0:03634615; h(5) = h(12) = �0:01268065;

h(6) = h(11) = �0:12482346; h(7) = h(10) = 0:13432404;

h(8) = h(9) = 0:68178289:

In this case, �(1) = 0:0001786, �(2) = 0:0003570, �(3) =
0:0005157, �(4) = 0:0005188, �(5) = 0:0005189, and �(K) =
0:00008149 for K = 2; 3; 4; 5. Hence, these errors are prac-
tically negligible. The amplitude responses of H0(z) and
H1(z) are shown in Fig. 1, whereas Figs. 2 and 3 show for
several values of K the reconstruction error and the domi-
nating aliased component.

0 0.2 0.4 0.6 0.8 1
−100

−80

−60

−40

−20

0

20

Amplitude responses for H
0
(z) and H

1
(z)

A
m

pl
itu

de
 in

 d
B

Angular frequency as a fraction of π

Figure 1: Amplitude responses for H0(z) and H1(z) in the
M = 7 and N + 1 = 18 case.
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Figure 2: Reconstruction errors for one- to �ve-level wavelet
banks in the M = 7 and N + 1 = 18 case.
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Figure 3: Maximum aliasing errors for two- to �ve-level
wavelet banks in the M = 7 and N + 1 = 18 case.

4 Applications in De-Noising, Noisy Deconvolu-
tion, and Lossy Compression of Signals/Images

The noise reduction (de-noising) method by the nonlinear
thresholding in the wavelet domain proposed by Donoho and
Johnstone [4] consists of the following three steps: (1) trans-
form the noisy data into an orthogonal domain, (2) Apply
"hard" or "soft" thresholding to the resulting coe�cients,
which will yield a suppression of the coe�cients of lower
energy, and (3) Transform the result back to the original do-
main with the aid of the inverse transform. However, when
using this scheme one may end up with some artifacts near
singularities (pseudo-Gibbs phenomenon). One way to over-
come this problem is to use undecimated (or stationary, shift-
invariant) wavelet transforms [5] by applying the following
simple strategy: wavelet de-noising is applied to all circular
shifts of a signal, each of the particular result of de-noising
is unshifted, and, �nally, the average of all these results is
generated [5]. Here we compare a fully translation-invariant
de-noising using the stationary wavelet transforms based on
"Coiets" and "Symmlets", and the stationary version of
pseudo-wavelet transform (NPR) proposed in this paper (all
�lters are of length 18). Figure 4 shows the de-noising results
of a "Doppler" test signal (generated by Donoho's MATLAB

routine "MakeSignal" from his software package "WaveLab"
[6]) of length 512: Five levels of decomposition have been
used. Visually the performance of all these methods looks
the same. Numerical performances have been estimated by
the root mean square error (RMSE) and the mean absolute
error (MAE):
(RMSE,MAE)("Noisy input")=(23.06, 0.82);
(RMSE,MAE)("Symmlet")=(9.39,0.27);
(RMSE,MAE)("Coiet")=(9.91,0.28);
(RMSE,MAE)("NPR")=(8.85,0.26).
For the proposed pseudo-wavelet bank, N + 1 = 18;

M = 7, �(5) = 0:000519; and �(5) = 0:000081:
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Figure 4: Noisy "Doppler" signal and translation invariant
wavelet de-noising using "Symmlet", "Coiet" and linear
phase pseudo wavelet.

Another application is the noisy deconvolution using the
proposed pseudo-wavelets. Since the deconvolution problem
is ill-posed, the application of the inverse �lter will give an
object which is extremely noisy and has no real resemblance
to the original object. The idea is to apply thresholding in
the wavelet domain with thresholds specially chosen to adapt
to the structure of the deconvolution problem [6].
We have used three test signals: \Bumps", \Doppler" and

\Cusp" (all of these test signals as well as the application of
the wavelets to this problem can be found in the software
package "WaveLab" [6]). Our test signals were convolved
with a recursive �lter that blurs out the sharp structure and
then noise was added.
We have compared the results of deconvolution by apply-

ing some orthogonal wavelet transforms as well as the pro-
posed pseudo-wavelet transforms. All these reconstructions
are nearly noise free and well preserve the structure of the
objects.
We have made 400 experiments (with each of the ob-

jects). The averaged results showing corresponding RMSE
and MAE are given in Table 1. We have examined 3 di�erent
wavelet transforms: Daubechies (D9), Coiet (C3), Symmlet
(S9), and two pseudo-wavelets P18�7 (N+1 = 18; M = 7)
and P18 � 9 (N + 1 = 18; M = 9). The test signals were
of the length 2048, and the transforms made 6 levels of de-
composition. For a fair comparison, all the �lter banks were
selected to be of the same length 18.
The third application of pseudo-wavelets is a lossy image

compression. Here we have used the best basis selection algo-
rithm [7] in order to obtain the best wavelet packet bases for



Table 1: Quantitative results for noisy signal deconvolution

Signals

Transforms "Bumps" "Doppler" "Cusp"

RMSE MAE �10�2 RMSE MAE �10�3 RMSE MAE �10�3
Daubechies (D9) 7.156 3.419 1.509 7.999 1.379 8.892

Symmlet (S9) 6.618 3.830 1.409 6.365 1.179 5.348

Coiflet (C3) 6.623 3.581 1.528 7.326 1.216 6.354

Pseudo (P18-7) 6.275 3.136 1.323 6.246 1.095 5.404

Pseudo (P18-9) 6.262 3.152 1.305 6.220 1.125 6.216

both an orthogonal "Symmlet" (S9) and the pseudo-wavelet
P18� 7 for the test image "Lenna" (256� 256). Then, this
image has been compressed in these bases keeping the largest
(in the absolute value) coe�cients. In Fig. 5 the best 7%
reconstructions for both cases are shown.
In addition to better numerical performances of the pro-

posed scheme, pseudo-wavelet transforms can be imple-
mented more e�ciently.
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