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ABSTRACT

In digital pictures curvature which characterizes the lo-
cal geometry of features cannot be calculated exactly
and can only be estimated. This paper presents two
methods to estimate curvature of oriented patterns at
di�erent scales which can be used even if the structures
are very close. The �rst approach assumes that a struc-
ture is locally de�ned by an implicit isointensity con-
tour. Curvature is obtained by a direct computation
stemming from the di�ererential geometry. The sec-
ond approach is based on an explicit representation of a
structure de�ned by a set of points initially extracted.
We assume this set represents an osculating circle and
�t it with a circular arc. Both methods are applied to
curvature estimation of seismic images for geological in-
terpretation.

1 Introduction

Curvature estimation algorithms play an important role
in the interpretation of digital pictures. Indeed curva-
ture which characterizes the local geometry of features
is a key notion in object recognition, biomedical data
analysis [1], topographic feature extraction [2], ... The
literature on the di�erential geometry [3] provides equiv-
alent de�nitions of the curvature. Figure (1) illustrates
one of them which is based on the local touching circle:
the curvature of a curve is de�ned as the inverse of the
radius of the osculating circle.

Figure 1: De�nition of curvature

In digital pictures the curvature cannot be calculated
exactly and hence must be estimated. Moreover cur-
vature features have di�erent levels of details and the

estimation can be computed at di�erent scales. This
paper presents two methods to estimate curvature of
structures at di�erent scales which can be used even if
the structures are very close. The �rst approach con-
sists in a direct computation stemming from the di�er-
ential geometry whereas the second one is based on the
estimation of the osculating circle by assuming that a
structure is de�ned by a discrete set of points. These
methods are applied to curvature estimation of seismic
images for geological interpretation.

2 2-D Curvature Estimation based on Di�eren-

tial Geometry

The �rst approach is based on the implicit representa-
tion of a structure. Assuming that the structure is lo-
cally de�ned by an isointensity contour, we compute the
curvature from the �rst and second partial derivatives of
the gray level fonction. Let I (x; y) be an in�nitely dif-
ferentiable image and (C) an isointensity contour. We
denote by M (x; y) a point of (C) and by g the gradient
of I at point M which is normal to (C). In a counter-
clockwise fashion, the unit vector t tangent to (C) at
point M is de�ned by:

t =
1q

I2x + I2y

�
Iy
�Ix

�
(1)

where Ix and Iy are the �rst partial derivatives of I.

Then the curvature k can be computed [4] as:

k = �
tTHt

kgk
(2)

where H =

�
Ixx Ixy
Iyx Iyy

�
is the Hessian matrix of I

and Ixx; Iyy; Ixy = Iyx are the second partial derivatives
of I.

Finally the curvature k is obtained from �ve partial
derivatives:

k =
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(3)



We propose another expression by introducing the
unit vector n normal to (C) at point M :

n =
g

kgk
(4)

Then the curvature k can be expressed [5] as:

k = �div (n) (5)

where div (:) represents the divergence operator.
This formulation only requires four partial derivatives

and a lower computation cost:
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with
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Expression (3) is usually implemented with smoothed
partial derivatives in order to obtain a continuous gradi-
ent vector �eld [4][6]. Unfortunately in the case of seis-
mic images elementary structures are very close, which
forbides the use of smoothed derivative operators. It
leads to biased values of curvature.
In order to regularize the gradient vector �eld we use

a principle component analysis (PCA) of the correlation
matrix:

A =

2
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IxIy I2y

3
5 (8)

where (:) denotes the mean operator computed in a
rectangular window.
It allows us to compute a local dominant orientation

which is given by the eigenvector corresponding to the
largest eigenvalue. Thus an estimation of the regular-
ized unit vector n� normal to (C) is available and the
expression (6) directly provides the curvature, using n�

instead of n.
One should be aware of a major limitation in using a

PCA of the gradient vector �eld for the estimation of the
unit vector n�. This leads to an orientation �eld instead
of a vector �eld which has �� ambiguity in phase angle.
Hence curvature estimation which requires a vector �eld
as input fail to yield the desired results. In the case of
seismic images we can reasonably assume that elemen-
tary structures are never vertical. Then the choice of
a phase angle of the unit vector n� belonging to [0; �]
allows us to obtain a continuous unit vector �eld and a
correct curvature estimation.
The rectangular window used in the calculation of the

correlation matrix A provides discontinuities in the cur-
vature estimation. The substitution of the convolution
by a gaussian kernel for the mean operator enables us
to get a more regular curvature. The new expression of
the correlation matrix is:

A� =

�
I2x Ixy
Ixy I2y

�
�G� (9)

where G� represents a gaussian kernel with standard
deviation �.

Either the size of the rectangular window used for
the computation of the PCA of the gradient vector �eld
or the parameter � can be considered as a scale factor,
which is linked to the desired level of details of curvature
features.

3 Curvature Estimation from Digital Data

The second approach is based on an explicit representa-
tion of a structure which is de�ned by a set S of points
initially extracted:

S = f(xi; yi) j i 2 [1::N ]g (10)

This set is composed of points located on both sides
of the pixel where we estimate the curvature. Then the
curvature at point M is computed by assuming that
the set S is a discrete approximation of the osculating
circle [7] to the structure. Therefore N the number of
points which compose the set S characterizes the scale
of curvature we aim at estimating.

3.1 Extraction of points

A way to extract points belonging to a structure is to
use the estimation of the local dominant orientation ob-
tained from the PCA of the gradient vector �eld. From
the unit normal vector n estimated in each point we �rst
de�ne an unit tangent vector t. Then the local form of a
structure can be reconstructed by integration of vector
t which also provides a set of consecutive points.

3.2 Curvature Estimation

Our approach is based on the assumption that the set
S represents the osculating circle. We �t a circular arc
with radius R and center C (xc; yx) on the local contour.
Then the curvature of the structure is de�ned by:

k =

8<
:
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(11)

A classical method [8] consists on the minimization of
the error function:
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Minimization of J leads to a linear matrix system with
a direct solution. The major problem of this method
arises when points are almost aligned: the estimated
curvature is large whereas it should be nearly equal to
zero.



Therefore we propose another criterion which com-
bines (�gure 2) the length of the chord de�ned by the
extremal points of the set S and the area A of the surface
delimited by the set S considered as a close curve:

Figure 2: Length d of a chord and area A.

The radius R is then solution of the following equa-
tion:
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This function de�ned for R 2
�
d
2

;1
�
is strictly in-

creasing and can be solved by a dichotomic algorithm.
In practice less than ten iterations are required to get
accurate results. Moreover in the case of large radius
d� R, a direct estimation is given by:

R =
d3

12A
(14)

4 Results

The methods we propose have been applied to seimic
images in order to detect points of high curvature. A 2-
D seismic image (�gure 3) is composed of seismic traces,
sinusoid-like waveforms, which are a record of re
ected
waves arising from impedance contrasts between strata.
The local extrema of seismic traces de�ne spatially con-

sistent lines, called seismic horizons. A major purpose
in seismic data analysis is the detection and the charac-
terization of seismic horizons separating homogeneous
layers of rocks, sediments, ... Curvature estimation of
these horizons is useful to help geological interpretation.

The results of the di�erential approach given in �gure
4 have been obtained by computing the divergence of the
unit normal vector. The curvature estimation is sensi-
tive to noise when the unit normal vector is obtained
by a PCA computed from low size windows. Therefore
we use a PCA computed from 21 � 21-sized windows
(�gure 4) which allows us to estimate only large scale
curvatures. Moreover the use of a gaussian kernel with
standard deviation � = 0:5 provides a more regular cur-
vature.

Figure 3: A seismic image

One can observe on this image that the loci of the
detected points describes the axis of the principal seis-
mic dome. Moreover the results point out the axis of
two di�erents domes almost visually imperceptible on
the original image. This was con�rmed by geologists.

Figure 4: Convex curvature estimation based on the
di�erential geometry (mean operator of size 21� 21).

The seismic image was also processed with the second
approach: the radius of the osculating circle is computed



from a set of 15 points. The high curvature loci is quite
regular as shown in �gure 5.

Figure 5: Convex curvature estimation based on the
osculating circle (15 points, PCA of size 11� 11).

We compare the noise robustness of both approaches
using a synthetized image (�gure 6) made up of circular
arcs. Di�erent amounts of gaussian noise (standard de-
viation �n = 1, 5, 10, 15, 20, 25) have been added. The
curvature estimation based on the di�erential geometry
is processed with a PCA of size 19 � 19: The second
method is computed from sets of 7, 9 and 11 points
provided by integrating of unit tangent vector obtained
from a PCA of size 13, 11 and 9 respectively. We can
notice that the neighbourhood used in both cases is sim-
ilar. The results (�gure 7) point out that the curvature
based on digital data is more robust to noise. Unfortu-
nately this approach can only be used with sets of few
points extracted by our method: the assumption that

the set of points initially extracted is a discrete approx-
imation of the osculating circle must be veri�ed.

Figure 6: Synthetized image of arcs.

Figure 7: Standard deviation of curvature estimation.

5 Conclusion

The 2-D curvature estimation has been extended to the
3-D case successfully. From a computationnal point
of view the di�erential geometry method is directly
adapted whereas the discrete arc approximationmethod
is implemented as a multi 2-D approach.
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