CURVATURE ESTIMATION OF ORIENTED PATTERNS

M. Donias', P. Baylou' and N. Keskes®
'Equipe Signal et Image ENSERB and PRC-GDR ISIS, BP 99, 33405 Talence Cedex, FRANCE
Tel: +33 05 56 84 61 85 - Fax: +33 05 56 84 84 06

E-mail:

marc@goelette.tsi.u-bordeaux.fr

*Département Image CSTJF - ELF Aquitaine, 64018 Pau Cedex, FRANCE

E-mail:

ABSTRACT

In digital pictures curvature which characterizes the lo-
cal geometry of features cannot be calculated exactly
and can only be estimated. This paper presents two
methods to estimate curvature of oriented patterns at
different scales which can be used even if the structures
are very close. The first approach assumes that a struc-
ture 1s locally defined by an implicit isointensity con-
tour. Curvature is obtained by a direct computation
stemming from the differerential geometry. The sec-
ond approach is based on an explicit representation of a
structure defined by a set of points initially extracted.
We assume this set represents an osculating circle and
fit it with a circular arc. Both methods are applied to
curvature estimation of seismic images for geological in-
terpretation.

1 Introduction

Curvature estimation algorithms play an important role
in the interpretation of digital pictures. Indeed curva-
ture which characterizes the local geometry of features
is a key notion in object recognition, biomedical data
analysis [1], topographic feature extraction [2], ... The
literature on the differential geometry [3] provides equiv-
alent definitions of the curvature. Figure (1) illustrates
one of them which is based on the local touching circle:
the curvature of a curve is defined as the inverse of the
radius of the osculating circle.
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Figure 1: Definition of curvature

In digital pictures the curvature cannot be calculated
exactly and hence must be estimated. Moreover cur-
vature features have different levels of details and the
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estimation can be computed at different scales. This
paper presents two methods to estimate curvature of
structures at different scales which can be used even if
the structures are very close. The first approach con-
sists in a direct computation stemming from the differ-
ential geometry whereas the second one is based on the
estimation of the osculating circle by assuming that a
structure is defined by a discrete set of points. These
methods are applied to curvature estimation of seismic
images for geological interpretation.

2 2-D Curvature Estimation based on Differen-
tial Geometry

The first approach is based on the implicit representa-
tion of a structure. Assuming that the structure is lo-
cally defined by an isointensity contour, we compute the
curvature from the first and second partial derivatives of
the gray level fonction. Let I (z,y) be an infinitely dif-
ferentiable image and (C') an isointensity contour. We
denote by M (x,y) a point of (C') and by ¢ the gradient
of I at point M which is normal to (C). In a counter-
clockwise fashion, the unit vector ¢ tangent to (C') at
point M 1s defined by:
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where [, and I, are the first partial derivatives of I.
Then the curvature k can be computed [4] as:
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Finally the curvature k i1s obtained from five partial
derivatives:
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We propose another expression by introducing the
unit vector n normal to (C') at point M:
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Then the curvature k& can be expressed [5] as:

k = —div (n) (5)

where div (.) represents the divergence operator.
This formulation only requires four partial derivatives
and a lower computation cost:
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Expression (3) is usually implemented with smoothed
partial derivatives in order to obtain a continuous gradi-
ent vector field [4][6]. Unfortunately in the case of seis-
mic images elementary structures are very close, which
forbides the use of smoothed derivative operators. It
leads to biased values of curvature.

In order to regularize the gradient vector field we use
a principle component analysis (PCA) of the correlation
matrix:

with
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where U denotes the mean operator computed in a
rectangular window.

It allows us to compute a local dominant orientation
which 1s given by the eigenvector corresponding to the
largest eigenvalue. Thus an estimation of the regular-
ized unit vector n* normal to (C') is available and the
expression (6) directly provides the curvature, using n*
instead of n.

One should be aware of a major limitation in using a
PCA of the gradient vector field for the estimation of the
unit vector n*. This leads to an orientation field instead
of a vector field which has +£7 ambiguity in phase angle.
Hence curvature estimation which requires a vector field
as input fail to yield the desired results. In the case of
seismic 1mages we can reasonably assume that elemen-
tary structures are never vertical. Then the choice of
a phase angle of the unit vector n* belonging to [0, 7
allows us to obtain a continuous unit vector field and a
correct curvature estimation.

The rectangular window used in the calculation of the
correlation matrix A provides discontinuities in the cur-
vature estimation. The substitution of the convolution
by a gaussian kernel for the mean operator enables us
to get a more regular curvature. The new expression of
the correlation matrix is:
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where G, represents a gaussian kernel with standard
deviation o.

Either the size of the rectangular window used for
the computation of the PCA of the gradient vector field
or the parameter o can be considered as a scale factor,
which is linked to the desired level of details of curvature
features.

3 Curvature Estimation from Digital Data

The second approach is based on an explicit representa-
tion of a structure which is defined by a set S of points
initially extracted:

S = {(xi,y:) | i € [L..N]} (10)

This set 1s composed of points located on both sides
of the pixel where we estimate the curvature. Then the
curvature at point M is computed by assuming that
the set S is a discrete approximation of the osculating
circle [7] to the structure. Therefore N the number of
points which compose the set S characterizes the scale
of curvature we aim at estimating.

3.1 Extraction of points

A way to extract points belonging to a structure 1s to
use the estimation of the local dominant orientation ob-
tained from the PCA of the gradient vector field. From
the unit normal vector n estimated in each point we first
define an unit tangent vector {. Then the local form of a
structure can be reconstructed by integration of vector
t which also provides a set of consecutive points.

3.2 Curvature Estimation

Our approach is based on the assumption that the set
S represents the osculating circle. We fit a circular arc
with radius R and center C' (z., y,) on the local contour.
Then the curvature of the structure i1s defined by:

% locally convex structure
k= (11)
% locally concave structure
A classical method [8] consists on the minimization of
the error function:
N 2
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Minimization of J leads to a linear matrix system with
a direct solution. The major problem of this method
arises when points are almost aligned: the estimated
curvature is large whereas i1t should be nearly equal to
zero.



Therefore we propose another criterion which com-
bines (figure 2) the length of the chord defined by the
extremal points of the set S and the area A of the surface
delimited by the set S' considered as a close curve:

Figure 2: Length d of a chord and area A.

The radius R is then solution of the following equa-
tion:

A — R? |arcsin (

This function defined for R € [%, oo[ 1s strictly in-
creasing and can be solved by a dichotomic algorithm.
In practice less than ten iterations are required to get
accurate results. Moreover in the case of large radius

d < R, a direct estimation is given by:

d3
R= (14)

4 Results

The methods we propose have been applied to seimic
images in order to detect points of high curvature. A 2-
D seismic image (figure 3) is composed of seismic traces,
sinusoid-like waveforms, which are a record of reflected
waves arising from impedance contrasts between strata.
The local extrema of seismic traces define spatially con-
sistent lines, called seismic horizons. A major purpose
in seismic data analysis is the detection and the charac-
terization of seismic horizons separating homogeneous
layers of rocks, sediments, ... Curvature estimation of
these horizons is useful to help geological interpretation.

The results of the differential approach given in figure
4 have been obtained by computing the divergence of the
unit normal vector. The curvature estimation is sensi-
tive to noise when the unit normal vector is obtained
by a PCA computed from low size windows. Therefore
we use a PCA computed from 21 x 21-sized windows
(figure 4) which allows us to estimate only large scale
curvatures. Moreover the use of a gaussian kernel with
standard deviation ¢ = 0.5 provides a more regular cur-
vature.

Figure 3: A seismic image

One can observe on this image that the loci of the
detected points describes the axis of the principal seis-
mic dome. Moreover the results point out the axis of
two differents domes almost visually imperceptible on
the original image. This was confirmed by geologists.

Figure 4: Conver curvature estimation based on the
differential geometry (mean operator of size 21 x 21).

The seismic image was also processed with the second
approach: the radius of the osculating circle 1s computed



from a set of 15 points. The high curvature loci 1s quite
regular as shown in figure 5.

Figure 5: Conver curvature estimation based on the
osculating circle (15 points, PCA of size 11 x 11).

We compare the noise robustness of both approaches
using a synthetized image (figure 6) made up of circular
arcs. Different amounts of gaussian noise (standard de-
viation o, = 1, 5, 10, 15, 20, 25) have been added. The
curvature estimation based on the differential geometry
is processed with a PCA of size 19 x 19. The second
method 1s computed from sets of 7, 9 and 11 points
provided by integrating of unit tangent vector obtained
from a PCA of size 13, 11 and 9 respectively. We can
notice that the neighbourhood used in both cases is sim-
ilar. The results (figure 7) point out that the curvature
based on digital data is more robust to noise. Unfortu-
nately this approach can only be used with sets of few
points extracted by our method: the assumption that
the set of points initially extracted is a discrete approx-
imation of the osculating circle must be verified.

\

Figure 6: Synthetized image of arcs.
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Figure 7: Standard deviation of curvature estimation.
5 Conclusion

The 2-D curvature estimation has been extended to the
3-D case successfully. From a computationnal point
of view the differential geometry method is directly
adapted whereas the discrete arc approximation method
is implemented as a multi 2-D approach.
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