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ABSTRACT

In this paper we address the problem of image texture
modeling. In particular we adopt here a 2D Wold de-
composition that separates a texture into regular and
chaotic parts, allowing for simple texture parameteriza-
tion, and for explicit extraction of periodic structures.
The identi�cation scheme based on the proposed decom-
position improves the accuracy of the estimation of the
model parameters as well as the visual resemblance of
the model with respect to samples, owing to compliance
of the chaotic component with the Julesz's conjecture.

1 INTRODUCTION

In the literature, di�erent approaches have been pro-
posed for the modeling of bidimensional random �elds.
In fact, to cite a few, they range from morphological
models, and models using fractals or Markov Random
Fields to autoregressive (AR) models or moving average
(MA) models.
The choice of a suitable model is highly dependent

on the application. For instance, AR (see [1]) or MA
(see [2]) systems driven by independent identically dis-
tributed (i.i.d.) excitation have been proposed for clas-
si�cation or synthetic reproduction of natural textures.
The use of such a kind of models simpli�es the iden-
ti�cation stage which is performed using deconvolution
techniques. Higher order statistical analysis can be used
in order to estimate the parameters characterizing the
texture as pointed out in [3], [4]). Then the synthetic
replicas can be obtained using the taken on model and
the estimated parameters.
However the quality of the synthetic replicas depends

on the capability of the used model to �t the given pro-
totype. In order to obtain a more faithful synthesis,
the model has to be complicated and more texture's
characteristics have to be taken into account. In [5], it
has been pointed out that, it is possible to take into
consideration perceptive texture's characteristics such
as randomness, directionality, periodicity, through the
decomposition of the texture into its unpredictable and
deterministic components according to the generaliza-
tion to the 2D case of the Wold decomposition theo-

rem [6], [7]. Referring to discrete time processes, the 1D
Wold decomposition represents a process as a sum of two
orthogonal components, the deterministic and the un-
predictable component. The "deterministic" (perfectly
predictable) component is constituted by a sum of har-
monics. The "unpredictable" component is a causal AR
process, i.e. a process generated by a white process ac-
ting as excitation, called innovation, driving a stable all
pole �lter. Extension to 2D processes of such a model
is not straightforward, since it requires a de�nition of
a causal ordering of the �eld elements. Using the clas-
sical lexicographic order, a half plane causal prediction
mechanism can be set. With this convention, it is pos-
sible to de�ne the unpredictable component as an AR
causal series, while the deterministic component con-
sists of a countable sum of bidimensional harmonics. In
addition, a third component must be accounted for in
the bidimensional case. This component, referred to as
evanescent �eld, is the sum of a countable set of 1D �elds
(processes constant along one direction) and can be seen
as a combination of plane waves. Thus, the identi�ca-
tion of an extended Wold model of a 2D �eld requires
not only the detection and estimation of harmonic com-
ponents, and the identi�cation of the AR model, but
also the extraction and the identi�cation of the evane-
scent �eld. In a recent paper, a method for 2D Wold
decomposition has been proposed for texture analysis
and synthesis [6]. The scheme aims to separate the tex-
ture into regular and chaotic parts, roughly associated to
the deterministic and unpredictable components respec-
tively. Even with some intrinsic limits coming from the
purely additive modeling and from the Gaussian nature
of the unpredictable part, the Wold-like decomposition
allows for simple texture parameterization, and for ex-
plicit extraction of periodic structures. On the other
hand, recently the authors,[8], [9], devised a quite di�e-
rent method for texture analysis and synthesis, directly
inspired to visual criteria, and in particular to the well
known Julesz's conjecture [10]. This conjecture admits
that textures having the same �rst order and second or-
der spatial distributions are distinguished with di�culty
from the visual system, at least in a preattentive stage



of vision. Actually, the method approximates a �eld
with prescribed �rst and second order distributions by
means of a system, driven by a realization of a white
Gaussian random �eld, constituted by the cascade of a
linear system, a zero-memory non-linearity, and �nally
another linear system. This model allows to perform
an unsupervised synthesis of textures circumventing the
problem of adding a human supervised component to
the excitation, in order to copy the underlying struc-
ture of many textures encountered in practice (see [2]).
The aim of the present work is to merge the two ap-

proaches into a unique framework, and to optimize the
overall identi�cation process.
In essence, a modeling technique consisting of the fol-

lowing stages is proposed:

1. identi�cation of the harmonic component, using a
Fourier analysis of the prototype,

2. identi�cation of the evanescent �eld, using the
Radon transform, after having subtracted the har-
monic component from the prototype,

3. identi�cation of the unpredictable component, af-
ter having subtracted the two components obtained
in the two previous steps, through the non{linear
method described in [8].

The above modeling scheme can be used for analysis and
synthesis purposes. For instance, it is well suited for
automatic quality control of industrial products chara-
cterized by regular textured surfaces. In this case, the
examination of the unpredictable part allows to detect
even small deviations from regularity. In synthesis pro-
blems, it allows to produce textures with a great deal
of naturalness, ranging from "clean" ideal periodic to
rough versions of a given prototype.
In this paper, after a theoretical survey about the

optimality of the procedures, algorithms are described
in detail, then results of texture synthesis are shown.

2 THE 2D WOLD{LIKE DECOMPOSITION

Let T = ft[n1; n2]; [n1; n2] 2 Z2g be a 2D regular and
homogeneous random �eld. It can be shown, [6], that
these kind of processes can be uniquely represented by
the orthogonal decomposition

t[n1; n2] = y[n1; n2] + q[n1; n2] (1)

where Y = fy[n1; n2]; [n1; n2] 2 Z2g is the
so called purely indeterministic �eld and Q =
fq[n1; n2]; [n1; n2] 2 Z2g is a deterministic random �eld
which can be perfectly predicted from the �eld past sam-
ples. However in the bidimensional case, unlikely the
monodimensional case, there is no natural order de�ni-
tion for "past". Let us recall, [6], that a family of non
symmetrical half-plane (NSHP), whose border line is of
rational slope � = �/�, can be de�ned. We will refer

to the NSHP total{ordering de�nition, whose boundary
line is of rational slope, as Rational NSHP (RNSHP).
Let O be the set of the RNSHPs which is possible to
de�ne on the 2D support, then each realization q[n1; n2]
of the stochastic process Q can be expressed in the fol-
lowing way, [6]:

q[n1; n2] = p[n1; n2] +
X

(�;�)2O

e
(�;�)

[n1; n2] (2)

where the random �eld P = fp[n1; n2]; [n1; n2] 2 Z2g is
half{plane deterministic, that is, it has no column{to{
column innovations with respect to the RNSHP support,
and the random �eld E

(�;�)
= fe

(�;�)
[n1; n2]; [n1; n2] 2

Z2; (�; �) 2 Og is the evanescent component which
takes into account the column{to{column innovations
of the deterministic random �eld.
Therefore, if the process T is a 2D regular and ho-

mogeneous random �eld, using eqs.(1),(2) the following
decomposition for t[n1; n2] holds

t[n1; n2] = y[n1; n2] + p[n1; n2] +
X

(�;�)2O

e
(�;�)

[n1; n2]
(3)

Using the arguments presented in [7], the evanescent
�eld has the spectral density function which can be
expressed as the sum of a �nite number of 1D � fun-
ctions concentrated along lines of rational slope in the
2D Fourier domain.
In natural textures often encountered in practice, the

half plane deterministic component can assume the form
of an harmonic random �eld as expressed by the follow-
ing formula
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k
's and D

k
's are mutually orthogonal random

variables and (!
k
; ¢

k
) is the spatial frequency of the k�

th harmonic.

Finally, here we model the purely indeterministic
component accordingly to the approach proposed by the
authors in [8], [9], which is brie�y summarized in the
next section.

3 THE INDETERMINISTIC COMPONENT
SYNTHESIS MODEL

The model, [8], employed to represent the purely in-
deterministic component of the texture is depicted in
�g.1. A realization u[n1; n2] of a Gaussian white ran-
dom �eld U = fu[n1; n2]; n1 2 N1; n2 2 N2g feeds the
cascade of a linear system c[n1; n2], a zero memory non{
linearity (hard{limiter), a linear system h[n1; n2], and a
�nal histogram equalizer �

�
(�). The output, v[n1; n2], of

the hard{limiter, driving the linear system h[n1; n2], is



Figure 1: Indeterministic component's model

a binary random �eld obtained by minimizing the dif-
ference between the �rst and the second order statistics
of the model's output and of the image sample. The �l-
ter h[n1; n2] accomplishes the task of reconstructing the
texture from the binary image, while a further re�ne-
ment is obtained performing a histogram equalization,
matching the synthetic texture with the original one.
The rational of this choice stems from the Julesz's con-
jecture, that requires the coincidence of �rst and second
order statistics to generate a texture visually close to
the given prototype, at least in a preattentive stage of
vision. In essence, the i.i.d. excitation used in classical
approaches, (see e.g. [1],[2]), to feed a linear system is
replaced by a more structured �eld tailored to retain the
morphological behavior of the prototype. The choice of
a binary excitation presents the advantage that, under
weak symmetry conditions, the whole of its second or-
der distributions is set by its autocorrelation function
(a.c.f.). This in turn implies that it is possible to ge-
nerate a binary excitation, v[n1; n2], with wanted second
order statistics by hard{limiting a realization of a Gaus-
sian random �eld s[n1; n2] with a suitable a.c.f.. In fact,
as stated by the arcsin law [11], the a.c.f. R

ss
[n1; n2]

of a realization of a random �eld s[n1; n2] and the a.c.f.
R
vv
[n1; n2] of its binarized version v[n1; n2] are related

through the following formula

R
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The identi�cation of the binary excitation and of the
�lter h[n1; n2] is performed using a Bussgang blind de-
convolution algorithm.

4 THE IDENTIFICATION AND SYNTHESIS
PROCEDURES

The proposed identi�cation and synthesis technique can
be summarized in the following steps:

4.1 Identi�cation of the harmonic component

Unlike in [6], it is accomplished starting from the esti-
mation of the bidimensional a.c.f. of the texture from a
selected sample. First, a coarse estimate of the Periodic
Spatial Grid (PSG) is determined looking at the a.c.f.
maxima nearest to the origin. Using this coarse esti-
mate, values of the harmonic components in the Fourier
plane are picked up, and �nely adjusted to maximize the
captured spectral energy. Let us indicate with z[n1; n2]
the impulse response of the �lter retaining the informa-
tion on the harmonic components of the given texture.

4.2 Identi�cation of the evanescent �eld

Once identi�ed, the additive periodic component of the
texture is subtracted from the sample. Then, the pre-
sence of evanescent components is detected by thres-
holding the corresponding maximum likelihood ratio.
As pointed out in [12], an e�cient implementation of the
Bayesian joint detection and estimation procedure can
be done in the Radon transform (RT) domain. Given
an image i(x; y), let g

i
(s; �) be its RT usually de�ned as

the line integral along a line inclined at an angle � from
the y-axis and at a distance s from the origin, that is:

g
i
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i
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Then, for Gaussian stationary observation noise, the �l-
tered projections are su�cient statistics for both detec-
tion and estimation problems, and the canonical con-
�guration of the Likelihood processor is constituted by
the operator bR

s;�
cascaded with a whitening �lter and

a Wiener �lter adapted to the power density spectrum
of the 1D cross-section of each planar wave [12]. Thus,
whenever the energy of the output of the Wiener �lter
exceeds a given threshold, the said output is retained as
an evanescent component of the texture at the corres-
ponding direction.

4.3 Identi�cation of the unpredictable compo-
nent

The identi�cation of the unpredictable component can
be performed after having subtracted the identi�ed
evanescent �eld from the sample. Let us indicate
with f [n1; n2] the estimate of the inverse of the �l-
ter h[n1; n2], with f the �lter operator associated to
f [n1; n2], and with y, w, v, the vectors obtained rear-
ranging fy[n1; n2]g, fw[n1; n2]g, fv[n1; n2]g columns in
lexicographic order. In Table 1, the identi�cation pro-
cedure, without its detailed derivation (which can be
found in [8]), is summarized. The unpredictable compo-
nent is identi�ed using the non-linear method described
in Table 1. Once estimated the a.c.f. bR

vv
[k; l] of the

binarized prototype, we apply the inverse arcsin law to
�nd the a.c.f. of bR

ss
[k; l] whose spectral factorization

leads to the design of the �lter c[n1; n2].



Table 1: Indeterministic component iterative identi�cation

procedure.

(*initialization*)
��1
�(0)

(y) = y

f(0) = [0 0 � � � 1 � � � 0 0]T

j =0
Repeat
w(j) = ��1

�(j)
(y)

z(j) = D
w
(j)f(j)

v(j) = sign
�
z(j)

�
f(j) = bR�1

w
(j)

w
(j)

� bR
v
(j�1)

w
(j)

�(j) = arg
�

histogram matching
�
G�1

f
(j)
v(j);y

�
j = j + 1
Until bR

v
(j+1)

w
(j) = const � bR

v
(j)

w
(j)

4.4 Synthesis of the harmonic component

The synthetic texture's harmonic component is obtained
passing a realization of a white Gaussian random �eld
through the �lter z[n1; n2] estimated in the analysis
stage.

4.5 Synthesis of the indeterministic component

The indeterministic component is synthesized employ-
ing the model depicted in �g.(1) driving the estimated
�lter c[n1; n2] with a realization of a white Gaussian
random �eld u[n1; n2]. The signal so obtained is then
binarized, passed through the �lter h[n1; n2], and equa-
lized.
Finally these two components are added to the origi-

nal texture's evanescent component producing the syn-
thetic replica of the given prototype.

5 EXPERIMENTAL RESULTS AND CON-
CLUSIONS

To give an example of how the proposed method works,
in �g.2, a whole sequence of images taken at various pro-
cessing stages, starting from the prototype to the �nal
results is shown. It is worth notice that such a methodo-
logy not only separates regular and 1D components from
random components, but also improves parameter esti-
mation accuracy and visual resemblance of the model
with respect to samples, owing to compliance of the in-
deterministic component with Julesz's conjecture.
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