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ABSTRACT

Optimal solutions for channel identification from over-
sampled Pulse Amplitude Modulated signals are presented.
While (large sample) optimal identification derived in the
time domain involves solution of matrix weighted linear sys-
tems of equations solved in a Least Squares sense, using Dis-
crete Fourier Transforms of the received data, it is shown
that optimal solutions are rather obtained through scalar
weighted Least Squares. Since the matrix of weights is not
a priori known, estimation is generally performed in two
steps. Here, we describe a less computational demanding
single step estimation procedure. In the small samples case,
the single step estimation is slightly less accurate than two
step procedures.

1 Introduction

n this contribution we address the problem of blind
identification of FIR communication channels in
N applicative contexts characterized by rapidly time-
variant channels and/or when small data samples are avail-
able. These conditions are particularly true in mobile com-
munications.

In this applicative context, estimators based on the cy-
clostationary nature of the fractionally-sampled transmitted
signal seem promising because good accuracy is obtained
from short data length. Cyclostationarity is exploited to de-
rive relations on the impulse response of the channel, re-
ferred in literature to as Cross Relations (CR) [1].

In presence of additive noise, the estimation of the chan-
nel may be not sufficiently accurate. Other approaches have
been proposed in order to improve accuracy by organizing
the relations in order to reduce the influence of the noise. In
[2], the geometric properties of a suitable matrix of data are
exploited by mimicking the MUSIC technique employed for
DOA estimation. In such approach, the effect of the noise
is properly taken into account by decomposing the space
spanned from data into two orthogonal subspaces (namely
the noise and the signal subspace). Estimation is carried
out by imposing that the solution is orthogonal to the noise
subspace.

From CR, asymptotically efficient solutions can be also
derived. In fact, (10) can be organized in a linear system of
equations where the unknown variables are the coefficients
of the impulse response of the channel. An asymptotically
efficient solution is obtained by optimally weighing the lin-
ear system of equations. The weighing matrix is dependent
on the unknown channel response; therefore, optimal solu-
tions can be obtained in a two step procedure. In the first
step, a coarse channel estimate is obtained by solving un-
weighed CR relations; this coarse estimate is employed to
build up the weighing matrix. In the second step, the CR
relations are optimally weighed in order to obtain the final
estimate. This approach has been employed in [3]. The op-
timal weighing has also been extensively investigated in [4].
In this work, closed form expressions of the weighing matrix
are derived to minimize the asymptotic estimation variance.

Cyclostationary properties can be also employed in the
frequency domain. In [5] it is exploited the fact that the
bi-argumental autocorrelation function of a cyclostationary
process is periodic in one of the indexes. The Fourier series
of the autocorrelation over the periodic index, called cyclic
spectrum, satisfies relations similar to the CR; channel esti-
mation can be performed by exploiting the structure of such
“frequency domain” relations.

In [6], the CR are drawn from the Discrete Time Fourier
Transform of the data. In the same work, an asymptotically
two step efficient estimator based on cyclic spectra is also
proposed.

In this contribution, we propose a DFT based approach for
the blind estimation of the channel response which is appli-
cable under some conditions commonly encountered in data
communications channels. We show that this approach is
equivalent to the CR based approaches in the noiseless case
while, for noisy data, some benefits are obtained w.r.t. time
domain approaches. In particular, we show that the optimal
weighing is performed at reduced computational complex-
ity. Moreover, we derive a one step asymptotically efficient
procedure w.r.t to the two step procedures proposed in lit-
erature [3, 6, 7].



2 DFT Based Blind Channel Identification

With reference to fig.1, let us consider the discrete-time
equivalent model of the received signal r[n] in a Pulse Am-
plitude Modulation (PAM) signaling scheme:

n| :Zsm~h[n—mP]+v[n] 1)

where s, denotes the generic transmitted symbol drawn
from a discrete constellation and v[n] is additive noise, pos-
sibly colored by the receiving shaping filter. The samples
h[n] are the impulse response of the overall channel (includ-
ing both the shaping filters in transmission and reception)
obtained by fractional sampling at P times the symbol rate.
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Figure 1: Discrete-time model of digital transmission through
communication channels.

Denoting by y[n] = >, sm - h[n — Pm] the useful com-
ponent in (1), and referring, for simplicity, to a fractional
sampling with P = 2, we introduce the expanded sequence
of symbols

Sn/2 for n even
Z sp-0n—2p| = (2)
0 for n odd
SO to write
yln] = hfn] * aln] ®)

The N point DFT of the expanded sequence of symbols a[n]
has the property to be N/2 periodic. In fact, defining

Ak % def DFTy{aln]} = z_: afn] - e32mnk/N

the zero interleaving in the expansion (2) induces the prop-
erty:

Akl =Ak+N/2] ; k=0,---,N/2—1 (@)

This property will be exploited to obtain a relation between
the channel response and the noiseless observations.

In fact, if we assume that the noiseless received sequence
y[n] is characterized by proper time guards (as for example
in block transmission of cellular communications), discrete
linear convolutions can be considered as circular convolu-
tions. In this respect, using the DFT, (3) is rewritten as fol-
lows:

Yk] = H[k] - A[k] (5)

where Y[k| and H[k] are the N point DFT’s of y[n] and h[n]
respectively.

Now, considering the pair of equations obtained from (5)
for k and k+N/2, invoking the periodicity of the expanded
sequence of symbols (4), it is possible to write:

Y[E|H[k + N/2) =Y [k + N/2]HIkK]

6
k=0, ,N/2—1 ©)

In (6), there are N / 2 equations in N the unknown parame-
ters H[k],k=0,--- ,N/2 — 1. Assuming that the channel
frequency response depends on L < N/2 parameters, these
latter are recoverable from (6), under suitable conditions.

For FIR channels of order L, the k-th DFT sample of the
channel H [k] is expressed by:

H[k] =fT(k)h (7)
where h is the vector containing the L+ 1 coefficients of the
channel impulse response h ' {h[O}, oy h[L]} " and f7 (k)
is the k-th vector of the DFT basis ||[f(k)||, =e’?™*P/N . I
this case, the homogeneous equations (6) become linear

(Y[k] - f5(k+ N/2) — Z[k+ N/2] - f%(k))-h =0
k=0,---,N/2—1
A similar system is derived in the time domain [1], making
use of the odd and the even sample sequence of y[n] :

®)

Yoln] ' y[2n + 1] = s, * ho[n]

def y[2n] = s, * he[n]

9)
Ye[n]

where h,[n] défh[2n +1] and h,[n] défh[2n} are the odd and
the even samples of the impulse response of the channel,
respectively. From (9), eliminating the symbols s,,, the fol-
lowing relation, similar to that obtained in the DFT domain,

are obtained:

Yo[n] * he[n] = ye[n] * hon] (10)
2.1 Channel Estimation
Let us now consider the noise corrupted DFT observations

RIK] def DFTn{r[n|}. Denoting by V[k| the DFT of the

noise samples v[n], we have R[k] = V[k] + Y[k]. Using
RI[k], (6) is rewritten as follows:
(R[k]-f7(k + N/2)—R[k + N/2]-£7(k))h = U[k]

11
k=0,--- ,N/2—1 b

where U [k] is a residual given by:
Ulk] = V[k|H[k + N/2) = V[k + N/2]|H[K] (12)

The residuals Ulk] are not known as they are dependent
on the noise V' [k]. Nevertheless, a channel estimate can be

obtained solving (11) in a Least Squares (LS) sense:
N/2—1

. ) .

h—argmﬁn{ Z ’ f7(k+ N/2) .

— R[k+N/2]- fT(k))h|2}



Loosely speaking, the solution is obtained by minimizing the
energy of the residuals U [k], under some constraint on h.

Similar LS solutions are obtained in the time domain [1].

The LS solution is heavily affected by the presence of ad-
ditive noise. A more accurate solution can be accomplished
by properly weighing the LS system so that the covariance of
the (weighted) residuals is proportional to the identity ma-
trix I. If the noise samples belong to a zero mean, stationary
process, the solution is Minimum Variance Unbiased (MVU)
and if the process is also Gaussian, the solution is Maximum
Likelihood (ML).

2.2 The Optimal Weighting

Assuming uncorrelated noise samples v[k], the DFT samples
V'[k] remain uncorrelated. Hence, from (12), it follows that
the covariance matrix Ky of the DFT residuals U|[k] is diag-
onal, with non-zero entries given by:

|Kullk = ot (k) = oy {|HE]]” + [H[k + N/2]*} (4

where o2 = E {V2[k]} is the variance of the samples of
the noise in the DFT domain. Therefore, the MVU solution
is obtained from a scalar weighted LS solution where the
weights of each equation in (13) are simply 1/ (k).

Unfortunately, the covariance of the residuals depends on
the solution h and therefore the MVU solution cannot be
obtained in a closed form.

Nevertheless, a two step procedure can be devised to ob-
tain an asymptotical (large sample) MVU solution. In the
DFT domain, as indicated in [7], this procedure consists of
the following three steps.

First, a coarse estimate of h by the LS solution in (13) is
obtained.

Then, this coarse solution is used to compute an (esti-
mated) covariance of the residuals 67 (k).

Finally, the asymptotical MVU solution is computed by
solving a new LS system where each equation is scaled using
the covariance of the residuals estimated in the second step.

The procedure is asymptotical MVU as the first step yields
a consistent estimate of h.

In the time domain, a similar two step procedure has been
described in [3], but a more involved weighing procedure is
required since the covariance of the residuals turns out to
be not (proportional to) a diagonal matrix; therefore, com-
putation of the pseudoinverse of this covariance matrix is
needed.

It is worth noting that, since the DFT domain based LS so-
lution involves uncorrelated residuals, it results to be “more
close” to the MVU estimate w.r.t. the correspondent time
domain LS solution, since in the time domain the residu-
als are correlated. Moreover, the two step DFT based solu-
tion is less computational expensive w.r.t. the time domain
two step solution, due to the simpler weighing procedure.
In particular, the computation load is reduced from O(N?)
to O(N/2log(N)) operations [7]. The major drawback of
the DFT based estimation is that proper time guards are re-
quired.

2.3 The Single Step Asymptotical MVU solution

The first step in two step procedures consists of estimat-
ing the weights. From (14), it is seen that the weighing de-
pends on the channel through its energy density spectrum
only. Therefore, assuming i.i.d. symbols, the weights may
be directly estimated from the observations R[k]. In fact, it
results

E{IR[K][’} = 0¥ + 0% - |H[K]] (15)

where 0% = E {|A[k]|?} is the variance of the DFT of the
symbols. Assuming 0‘2, known, an unbiased estimate of
o?, (k) is simply given by:

2
ot = 75 (IR + | Rk + N/2)" =203 ) o)
A

Estimating the weights from (16), a single step algorithm is
obtained, scaling the LS equations (13) by 6%. Note that
the estimate (16) resembles the periodogram estimate and it
turns out to be not consistent. Therefore, an asymptotical
MVU estimation cannot be achieved using the weights &2U
estimated through eqrefeq:pesononconsistente.

A consistent estimate of o2 is obtained noting that, for
channels of order L, the N point DFT |H[k]|* depends on
2L+1 parameters which are the samples coefficients of the
autocorrelation (acf.) c,[m]=h[m] * h[—m]. In fact,

L L

|H[k]|> = Z Z hlp] - h*[q) - e P2 P=k/N (17

p=0¢=0

Substituting m =p—gq, we have

L
HE? = > cn[m]-e >mmr/N (18)

m—
resulting also cp[m] = ¢,[—m|. Considering (18), we ob-

serve that the weights o[zj expressed in (14) depend only on
the acf. coefficients as well. In fact, using the (18), we can
write for even L:

L
UIZJ(]{)ZU%/ (QCh[O] —0—2 Ch[m].eszﬂmk/N(l + (—l)m)>

m=—1L
L/2
= 20‘2/<ch [0] +2 Z R {ch [2m)]. 727 2mk/N })
m=1

Introducing the vectors
T
o = [02 (0)--- 02 (N/2 — 1)}
T
cn = [enl0],cnl2], cnlL]]
and the matrix Q whose components are

Q| (ko) = 202 (1 + 6[m]) - e=72m2mk/N



the previous equation can be written as:
oy =Q-ch (19)

Denoting by R the N/2 vector of components (k =
0,..N/2 — 1)

IRl = (|RIE]*+|R[k + N/2|* — 207,) /o

a consistent unbiased estimation of the L/2 + 1 vector ¢,
can be obtained as follows:

¢, =Q" R (20)

where t denotes pseudoinversion. The vector ¢y, is directly
estimated by the power spectrum of the observations and
therefore it remains well estimated even when channel or-
der is overestimated. Therefore, the channel order may be
estimated by analysing the amplitude of the coefficients in
Ch-

From (19) and (20), a direct estimation of the weights is
obtained as:

Q

7=QQ"-R (21)

The matrix QQ™ does not depend on the observed data and
therefore it can be computed once. Since the estimate of o'[zj
is consistent, then the weighted LS solution given by scaling
(13) with 6'2U is also asymptotically efficient. Note that since
the weighing consists only in normalizing the equations by
&[zj, then numerical problems due to small values may be
easily monitored.

3 Smulation Results and Conclusion

Simulation results are provided to assess the validity of the
proposed one step optimal solution (FCR), in comparison to
the CR method [1], the two step procedure (TSML) and the
Cramer Rao Bound (CRB) drawn in [3]. The experimental con-
ditions are the same reported in [3]. In particular, the chan-
nel impulse response is h=[1, 1,—2 cos #,—2 cos(#+9), 1, 1"
for § =7 /10. The parameter ¢ affects the identifiability of
the channel: for § = 0 the channel is not identifiable. The
simulations are performed vs. SNR, and vs. the channel pa-

rameter ¢ and refer to [NV, = 100 Montecarlo trials. The SNR

hjjo,
is defined as SNRyp = 201og; < o ) A sequence of
V20,

N = 30, zero-mean, i.i.d., binary (+1) symbols is consid-
ered. The mean square error of the channel parameters is

1 1 N, ~ 2

MSEdB—201Og10 <h|| \/NT Zi:l Hh h” >

Comparable performances between TSML and FCR are ob-
served as shown in figs. 2 and 3 where the mean square
error of the channel estimate is plotted vs. SNR and a
parameter 6 . Although slightly less accurate w.r.t. the
TMSL method, the proposed FCR method presents consider-
able computational advantages; in fact FCR method requires
O(N/2log(N)) operations vs. O(N?) operations required
by TMSL and the FCR solution is directly obtained through
a single step procedure.
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Figure 2: Mean Square Error of channel parameter estimates ver-

sus SNR. 0 =m/10).
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Figure 3: Mean Square Error of channel parameter estimates
versus the parameter o related to identifiability of the channel.
(SNR = 45dB).



