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ABSTRACT

Limiting the analysis to the exploitation of the second
order statistics of the complex data, the optimal Spatio-
Temporal (ST) receivers in stationary contexts are Linear
and Time Invariant (TI). However, for (quasi)-
cyclostationary observations, it is now well-known that the
optimal ST complex receivers become (poly)-periodic (PP)
and, under some conditions of non circularity, Widely
Linear (WL). Using these results and the fact that PP
filtering is equivalent to FREquency SHifted (FRESH)
filtering, the purpose of this paper is to present a new ST,
PP and WL receiver structure, very useful for applications
such as passive listening or source separation, taking into
account the potential (quasi)-cyclostationarity and non
circularity properties of the observations. This new cyclic
receiver may be implemented either blindly or from the a
priori knowledge or estimation of the useful signal steering
vector. The performance computation of this new cyclic
receiver shows off the great interest of the latter in
cyclostationary contexts and its great capability of
interferences rejection even from a one sensor reception.

1. INTRODUCTION

Limiting the analysis to the exploitation of the second
order statistics of the complex data, the optimal ST
receivers in stationary contexts are Linear and TI.
However, for (quasi)-cyclostationary observations, it is
now well-known [1] that the optimal ST complex receivers
become PP [2] and, under some conditions of non
circularity [3], WL [4]. The interest of optimal PP and WL
filters in the digital radiocommunication context has been
presented in [2] for temporal filters and in [5] for spatial
filters, assuming a training sequence is available for the
useful signal. More recently, assuming the a priori
knowledge or estimation of the useful signal steering
vector (passive listening, source separation...), the interest
of PP and WL ST filters has been analysed in [6], where a
cyclic LCMV beamformer corresponding to a cyclic

extension of the well-known Generalized Sidelobe
Canceller [7] has been introduced.

The purpose of this paper is to present a new ST, PP
and WL receiver structure, very useful for applications
such as passive listening or source separation, taking into
account the potential (quasi)-cyclostationarity and non
circularity properties of the observations. This new cyclic
receiver, belonging to the class of MMSE-based cyclic
receiver and called Hybrid MMSE (HMMSE) Cyclic
Receiver, may be implemented either blindly or from the a
priori knowledge or estimation of the useful signal steering
vector. The performance computation of this new cyclic
receiver shows off the great interest of the latter in
cyclostationary contexts and its great capability of
interferences rejection even from a one sensor reception.

2. PROBLEM FORMULATION

Consider an array of N Narrow-Band (NB) sensors
and let us call x(t) the vector of the complex envelopes of
the signals present at time t at the output of the sensors.
Each sensor is assumed to receive the contribution of a
useful cyclostationary signal, a cyclostationary jammer
and a background noise. Under these assumptions, the
observation vector x(t) can be written as

   x(t) = s(t) ej(∆ω0t+φ0)s + j(t) ej(∆ωit+φi) J + b(t)     (2.1)

where b(t) is the noise vector, assumed spatially white and
stationary, s(t), ∆ω0, φ0 and s are the complex envelope,
assumed zero-mean and cyclostationary, the carrier
residue, the phase and the steering vector of the useful
signal respectively, whereas j(t), ∆ωi, φi and J are the
complex envelope, assumed zero-mean and
cyclostationary, the carrier residue, the phase and the
steering vector of the jammer respectively.
 Under the previous assumptions, for a given ST
observation (NL x 1) vector xST(t)
=∆  (x(t)T, x(t − Te)

T,..., x(t − (L − 1)Te)
T) T, where Te is the

sample period, using the fact that PP filtering is equivalent



to FREquency SHifted (FRESH) filtering [2], the general
output of a M-th order PP filter is defined by [6]

     y(t) = h1
†xST(t)  + ∑

M

m = 2

 hm
†xST(t − ∆m)ζm ej2παmt

(2.2)
where, for 1 ≤ m ≤ M, hm is a (NL x 1) TI complex filter,
ζm = ±1 with x 1 =

∆
   x  and x -1 =

∆
   x* (complex conjugate),

∆m is a delay and αm is a cyclic frequency. Note that the
1st-order PP filter, defined by (2.2) with M = 1, is the
classical Linear and TI ST filter, whereas for M > 1, the
Mth-order PP filter defined by (2.2) is Linear if all the ζm
are equal to 1 and WL in the other cases, TI if all the αm
are zero and PP otherwise, Temporal if N = 1, Spatial if L
= 1 and all the ∆m are zero and ST in the other cases.

For given values of L and N and for given observations
xST(t), the general problem of finding the optimal M-th
order PP filter consists to find the quantities hm, ∆m, ζm
and αm, 1 ≤ m ≤ M, such that the output y(t), defined by
(2.2), gives the best restitution or estimation of the useful
signal xs(t) =

∆
  s(t) ej(∆ω0t+φ0), in a particular performance

criterion sense, under the constraint of the knowledge of
more or less a priori information on the signals. In this
paper, no useful training sequence is assumed to be a priori
avalaible and at most the steering vector, s, of the useful
signal is assumed to be a priori known.

3. PERFORMANCE CRITERION

Defining the (MNL x 1) vectors H =∆  [h1
T,  h2

T, ...,
hM

T]T and X(t)  =∆   [xST(t)T, exp(j2πα2t) xST(t − ∆2)ζ2 T,
..., exp(j2παMt) xST(t − ∆M)ζM T]T, the expression (2.2)
can be written as

y(t)  =  H†X(t) (3.1)

The quality of the restitution of xs(t) by y(t) could be
evaluated by computing the Mean Square Error (MSE)
between y(t) and xs(t), as it is done for example in [2].
However while H and µH, where µ is an arbitrary
constant, are equivalent filters, since they give the same
output contrast between the useful signal and the total
noise (jammer plus noise), or, for digital useful signals, the
same output Bit Error Rate (BER), they don't give the
same MSE. This result means that generally, the MSE
between y(t) and xs(t) is not a good criterion to evaluate
the performance of the filter H.

To find a good alternative to the MSE criterion, let us
introduce the (MNL x 1) vectors S(t), J(t) and B(t) defined
in a same manner as X(t) but with the vector xST(t)
replaced by the vector containing only the useful signal,
the jammer and the noise contribution in xST(t)
respectively. With these definitions, the output y(t) can be
written as

y(t)  =  H†S(t) + H†J(t) + H†B(t)   (3.2)

If we call signal of interest at the output of H all the terms
of y(t) which are proportional to xs(t), it is obvious that the
terms H†J(t) and H†B(t) belong to the total noise terms at
the output of H whereas the term H†S(t) contains both
useful and noise components. Applying the projection
theorem on the useful complex signal xs(t) at each
component of S(t), with the inner product (u(t), v(t))  =

∆
 

<E[u(t)v(t)*]>, where the symbol <.> corresponds to the
time average operation, the vector S(t) can be written as

S(t)  =  xs(t) S + I(t)    (3.3)

where <E[I(t) xs(t)
*]> = 0 and S is a time-independent

vector which components are the coefficients of xs(t)
appearing in the orthogonal projection of the components
of S(t) on xs(t). Inserting (3.3) into (3.2) we obtain

     y(t) = xs(t) H
†S + H†I(t) + H†J(t) + H†B(t)  (3.4)

     =∆    xs(t) H
†S + H†BT(t)   (3.5)

where BT(t)  =∆   I(t) + J(t) + B(t). It then becomes obvious
that the signal of interest at the output of H corresponds to
the term xs(t)H

†S and the term H†BT(t) is a noise term.
From these results the Signal to Total Noise Ratio (Signal
to Interference plus Noise Ratio or SINR) at the output of
H, SINR[H], can be defined and is taken in the paper as
the performance criterion

SINR[H]   =∆     πs |H
†S|2 / H†RBT H (3.6)

where πs =
∆

  <E[|s(t)|2]> and RBT  =
∆

  <E[BT(t)BT(t)†]>.
Note that H and µH have the same output performance and
it is easy to verify that

SINR[H]  =  πs  / MSE[H /S†H] (3.7)

which unifys the SINR and the MSE, where MSE[H]
corresponds to the MSE between xs(t) and H†X(t). Finally,
introducing RX =

∆
  <E[X(t)X(t)†]> and rXs =

∆
  <E[X(t)

xs(t)
*]>, the SINR[H] can also be written as

    SINR[H] =  (|H†rXs|
2/πs) / [H

†RXH − (|H†rXs|
2/πs)]

(3.8)

4. OPTIMAL M-TH ORDER PP FILTER

From (3.6), it becomes obvious that the optimal M-th
order PP filter, Ho, is non unique and defined by

Ho =  µ1 RBT 
−1

  S  =  µ2 RX  
−1 rXs (4.1)

where  µ1 and  µ2 are arbitrary constants, while the
maximal output SINR is given by



SINRo  =∆    πs S
†RBT 

−1
  S (4.2)

The expression (4.1) shows that the optimal M-th
order PP filters Ho correspond to the filters proportional to
the M-th order PP Wiener filter, obtained for µ2 = 1. The
implementation of this optimal filter Ho requires the a
priori knowledge or estimation of the vectors S or rXs,
which seems itself to require the a priori knowledge of a
useful training sequence as soon as ML > 1. However, for
applications such as the passive listening, training
sequences are not a priori available and, at most, the
steering vectors of the signals may be a priori estimated. In
such situations, the M-th order PP Wiener filter seems
difficult to be implemented directly and alternative M-th
order PP filters have to be found. A first alternative,
corresponding to the M-th order PP GSLC (cyclic GSLC),
has been proposed recently in [6] and has been shown to
give relatively weak gain in performance with respect to
the well-known Linear and TI Spatial Matched Filter, due
to the strong constraints imposed to the useful signal. In
the next section we propose a second alternative, the M-th
order PP HMMSE filter (HMMSE Cyclic Receiver),
which seems to be much more powerful than the Cyclic
GSLC.

5. M-TH ORDER PP HMMSE FILTER

5.1 Problem description

The alternative PP filter proposed in this section aims
at trying to implement the M-th order PP Wiener filter
from, at most, the a priori knowledge of the useful signal
steering vector s. More precisely, as it has already been
done in [8] for Linear and TI filters, the idea of this section
consists, firstly, to try to estimate a good useful training
sequence, d0(t), from the data and, at most, the a priori
knowledge of s, and, secondly, to implement the M-th
order PP filter which minimizes the MSE between d0(t)
and the filter output. In other words, the problem we
address in this section is to find the M-th order PP filter H
such that the output y(t), defined by (3.1), minimizes the
MSE, MSE[d0(t), H], defined by

MSE[d0(t), H]   =∆    <E[|d0(t) − H†X(t)|2]> (5.1)

where the training sequence d0(t), built from the data, has
the form

  d0(t) = h0
†xST(t − ∆0)ζ0 ej2πα0t (5.2)

and where the choice of the (NL x 1) vector h0 and the
quantities (∆m,ζm,αm), 0 ≤ m ≤ M, must be optimized. The
filter H solution of this problem is said hybrid since it is
the result of two cascaded optimization problems, the first

one corresponding to the choice of the best reference
signal d0(t), from the data and at most the vector s, and the
second one being the optimization of the MSE (5.1). Note
that the problem which is addressed in [8] is the one which
is addressed in this section but with M = 1 and L = 1, i.e.
only with classical Linear, TI and Spatial complex filters.

5.2 M-th order PP HMMSE filter expression

Defining x0(t) by x0(t) =∆  xST(t − ∆0)ζ0 ej2πα0t and the
(MNL x NL) matrix rXx0 by rXx0 =

∆
  <E[X(t) x0(t)†]>, the

M-th order PP HMMSE filter, Hhy, solution of the
previous problem, can be written as

Hhy  =  RX  
−1 rXx0 h0 (5.3)

In these conditions, for given values of M, L and N,
the problem is to choose the vector h0 and the quantities
(∆m,ζm,αm), 0 ≤ m ≤ M, such that the SINR at the output
of Hhy is as high as possible and, if possible, maximized
over all the filters H, in which case, Hhy and Ho would
coïncide.

5.3 Parameters optimization

A necessary and sufficient condition for Hhy to
coïncide with Ho is that the vector rXx0h0 becomes
proportional to the vector S. Using (2.1) into (5.2) and
taking into account only (N x 1) spatial vectors for h0, we
deduce from (3.4) and (5.2) the expression of rXx0h0, given
by

  rXx0h0  = <E[xs(t)xs(t − ∆0)ζ0*] e−j2πα0t> (sζ0†h0) S

    +   <E[I(t) xs(t − ∆0)ζ0*] e−j2πα0t> (sζ0†h0)

    +   <E[J(t) xj(t − ∆0)ζ0*] e−j2πα0t> (Jζ0†h0) 

    +   <E[B(t) b(t − ∆0)ζ0†] e−j2πα0t> h0 (5.4)

From this expression, we deduce that a necessary and
sufficient condition for the component proportional to S
not to be nulled is that the term (sζ0†h0) is not zero and
that the parameters (∆0,ζ0,α0) are such that the cyclic
correlation function of xs(t) associated to these parameters
is not zero. In other words, the parameters (∆0,ζ0,α0) must
be associated to a cyclic frequency of the useful signal.

On the other hand, due to the stationarity of b(t), the
term of expression (5.4) associated to the noise vector B(t),
becomes zero provided that for each value of m (1 ≤ m ≤
M), (∆m,ζm,αm) is different from (∆0,ζ0,α0).

Besides, the term associated to the jammer in the
expression (5.4) becomes nulled if (Jζ0†h0) or if <E[J(t)
xj(t − ∆0)ζ0*] e−j2πα0t> is zero, the latter situation
generally occuring when the signal and the jammer do not
share any cyclic frequency.



Finally, under the previous conditions, the term
associated to the vector I(t) in (5.4) becomes zero for some
particular choices of parameters (∆m,ζm,αm) (0 ≤ m ≤ M)
and for some useful signal modulations.

Thus, when all the previous conditions are verified,
Hhy and Hocoïncide. In this case, we can show [1] [5] that
the gain in performance obtained in using Hhy instead of a
classical Linear and TI filter increases as the cyclic
correlation coefficient of the jammer associated to the
parameters (∆m,ζm,αm) (1 ≤ m ≤ M) increases, which
gives a new information for the choice of (∆m,ζm,αm) (1 ≤
m ≤ M). The filter Hhy will be blind if no useful signal
information is used to construct h0 and informed in the
other cases.

6. EXAMPLE

To illustrate the previous results, the figure 1 shows
for N = 1 and N = 2, the variations of the SINR at the
output of the classical Linear and TI Wiener filter (M = 1),
noted (W), and at the output of the HMMSE filter, noted
(H), as a function of the product Tsx∆fj, where Ts is the
symbol duration of the useful signal and ∆fj is the carrier
residu of the jammer, for BPSK useful signal and jammer,
which pulse functions are 1/2 Nyquist filters with a roll off
equal to 1. The useful signal impinges on the array at 0°
from broadside with ∆fs = φs = 0, SNR (Signal to Noise
Ratio) = 5 dB and Ts = 6Te. The jammer impinges on the
array at 5° from broadside with φj = 0, JNR (Jammer to
Noise Ratio) = 20 dB and a symbol duration Tj = Ts. The
filter h0 has all its components nulled except the first one
which is equal to one. For all the filters, L = 6. For the
HMMSE filter, M = 4 with (∆0,ζ0,α0) = (0, -1, 0),
(∆2,ζ2,α2) = (0, -1, 2∆fj), (∆3,ζ3,α3) = (0, -1, 2∆fj + 1/Tj),
(∆4,ζ4,α4) = (0, -1, 2∆fj - 1/Tj).

Under these assumptions, the M-th order PP HMMSE
filter and the M-th order PP Wiener filter coïncide and the
figure 1 shows their great capability of rejection with
respect to that of the classical Wiener filter for both N = 1
and N = 2, which shows the great interest of the HMMSE
cyclic filter for applications such as passive listening or
blind source separation after the blind identification of the
sources steering vectors.

7. CONCLUSION

In this paper, a new M-th order PP receiver which
implementation requires at most the a priori knowledge of
the useful signal steering vector, has been presented to
improve the performance of the classical Linear and TI
Wiener filter in (quasi)-cyclostationary contexts. This new
receiver is called Hybrid MMSE cyclic receiver since its
implementation is made in two stages. In a first time, a
useful training sequence is constructed from the data and
in a second time, the HMMSE is computed by minimizing

the averaged MSE between the estimated training
sequence and the filter output. The conditions under which
the new filter implements the M-th order PP Wiener filter
(optimal in a SINR maximisation sense), either blindly or
from the a priori knowledge of s, have been given. The
performance illustration of this new filter shows the great
interest of the latter for passive listening or blind source
separation in cyclostationary contexts.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-20

-15

-10

-5

0

5

10

Ts x carrier1

S
IN

R
 (

dB
)

w1

w2

H1

H2

Fig. 1  -  SINR at the output of the HMMSE Cyclic (H) and
Classical Wiener (W) receiver as a function of Tsx∆fj, for

N = 1 and 2
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