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Abstract

In a great many situations polarised waves are re-
ceived on vectorial sensors. These waves are com-
posed of several polarised sources associated with dif-
ferent modes of propagation. The objective of our
work is to separate the polarised sources without a
priort knowledge of the polarisation of each source
and to apply this technique to elastic waves observed
in a seismic sounding.

1 Introduction

In radar observation, in seismic investigation (4] and
other physical observations the recorded waves are
vectorial. Therefore it is possible to take advantage
of the polarisation in the separation of the sources
which generate these waves.

We will first give an account of the different de-
scriptions of the state of polarisation. Then we will
propose an algorithm for the separation of polarised
waves using fourth order cumulants. The separa-
tion algorithm will be illustrated using both synthetic
data and real seismic data.

2 Polarisation

2.1 Polarised modes of propagation

When the frequency band is sufficiently narrow polar-
isation does not vary (significantly) within the band-
width of the signal. If this is the case, a polarised
wave received on 2 sensors can be written as
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Figure 1: Polarisation ellipse

z(t) = z(t) + jy(t) is the analytic signal describing
the amplitude of the wave, p and € caracterize the
polarisation and p is a complex, normalised, vector
describing the polarisation state.

2.2 Polarisation state

The polarisation state of a signal output received on
the sensors is described by p and 8. For 8 = 0 we get
a linear polarisation, for p = 1 and § = 7/2 a circular
polarisation, otherwhere the polarisation is elliptical.
The two caracteristics of the ellipse of polarisation
are the excentricity: e = ?"-m = £ and the angle ¢
(figure 1).

A visual representation of the polarisation state is
given by the Poincare sphere. In this representation
a polarisation state is caracterized by a point on a
sphere of radius unity. The azimut is represented by
¥ and the declination by x 2arctan(b/a) with a
positive value for a positive rotation and a negative
value for a negative rotation. We represent the pro-
Jection of the Poincare sphere on the Ozz plane (fig-
ure 2). Within the Ozz plane the coordinates of one
state of polarisation are z = coskcosy¥  and y=
sin k.



Figure 2: A point M on the Poincare sphere, its pro-
Jection m on the Ozz plane and the polarisation el-
lipse associated with the point m

3 Polarised waves separation

3.1 The model

The combination of two polarised waves is received
on two sensors. These two components have reached
the sensors through different paths so we can suppose
that their random amplitudes are statistically inde-
pendent. The state of polarisation of each component
and the mixing factors, a; and ay are unknown.The
complex vectorial signal received on the sensors is
given by:

m(t) = cip, 21(t) + 2P, 22 ()
which gives

(22 322

This matricial mixing corresponds exactly to the
model used for sources separation [5]. In order to
separate the two combined waves and to recover their
state of polarisation we have to identify the matrix
A. This identification cannot be acheived using only
second order statistics but it must uses second and
fourth order statistics (1, 5. Source separation tech-
niques allow the separation of two non-gaussian waves
and the recover of their amplitude and of their state
of polarisation.

One particularity of this technique is that the po-
larised waves have complex values. Higher order
statistics of signals with complex values are presented
in [3]. It is shown there that we must simultaneously
consider the signals and their complex conjugates.
This begs the question of circularity. The definition
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of circularity is given in [5]. For circular signals it
is sufficient to consider statistics that combine equals
number of non-conjugated and conjugated terms. A
true stationary frequency is circular and thus the nar-
row band signals that we consider here are circular
or nearly circular.

3.2 Separation algorithm

The mixing matrix A, given in (1), is factorised into
the product of 3 matrices: '

A =V A2yt

V and U are unitary matrix and A is diagonal. The
separation is acheived out in two steps using higher
order statistics. The first step uses second order
statistics and the second fourth order ones.

3.2.1 Second order step

With E[z(¢)z()"] = I (identity matrix), the covari-
ance matrix of the observed signal m(t) is:

C = Elm(t)m(t)] = V A V',

The matrix A is given by the eigenvalues of C and
the matrix V by the eigenvectors of C.

Having estimated V and A we standardise the ob-
servation

)= A2 Vi m(t) = Ut m(t).

In order to achieve the separation we have to iden-
tify the matrix U. This is done using fourth order
statistics.

3.2.2 Fourth order step

In order to identify the matrix U several methods
have been proposed [5]. We use the approach based
on the maximum likelihood [1, 2.
The unitary matrix U is written
U= ( cosf
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Figure 3: Lissajou plots of the initial sources and of
the sources obtained at order 2 and 4

The maximum likelihood function of 6 and X is
the sum of the squares of the fourth order cross-
cumulants after the application of the matrix U

Mi(6,x) =1C(1,1,1,2;6,x)1* +C(2,2,2,1;6, x)|2
+1C(1,1,2,2;6, x)/?,

with C(i, j, k,1) = Cumulant(l;, 1, L)
The values of 6 and y that maximize this function
give the estimate of the matrix U.

4 Examples

We present results obtained for both synthetic data
and for real data for seismic soundings.

4.1 Synthetic data

We construct a two-dimensional signal which is a lin-
ear combination of two polarised waves. The am-
plitudes of the two waves are non-gaussian, white,
digital signals containing 1024 samples. One of the
waves is linearly polarised and the other one is ellip-
tical. We show in figure 3 the Lissajou plot of the
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Figure 4: Points representative of the polarisation at
orders 2 and /

two sources and the sources separated at order 2 and
at order 4.

In order to give an experimental account of the
precision we plot (figure 4) the points representa-
tive of the polarisation state on the projection of the
Poincare sphere obtained in 50 independent tests of
the sources.

4.2 Seismic data

The technique is applied to a seismic data set col-
lected by M. Dietrich of the LGIT.

4.2.1 Physics of seismic observation

In a seismic investigation the signal is conveyed by
elastic waves propagating within the ground [4]. Dif-
ferent modes of propagation exist : P-waves with a
linear polarisation parallel to the direction of propa-
gation, S-waves with a polarisation in the plane per-
pendicular to the direction of propagation, Rayleigh
waves that are elliptically polarised waves guided
along the surface of the ground...Therefore in this
context the use of polarisation is useful in separating
the modes of propagation.

4.2.2 Seismic data separation

The outputs from 10 equispaced sensors, with a 10m
separation, give the vertical and one horizontal com-
ponent of the ground displacement in the wave cre-
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Figure 5: Waveforms of the sensors outputs and of
the sources at order 2 and J

ated by an explosive source situated at 400m from the
first sensor. The covariance matrix and the fourth
order cumulants are estimated on the 10 sensors out-
put.

Figure 5 shows the waveforms of the observed
waves, of the sources separated at the second order
and at the fourth order. Figure 6 shows the polari-
sation of the recorded waves and the polarisations of
the sources separated at order 2 and 4.

The second order step leads to a physically non-
coherent separation. In the fourth order step, one of
the separated sources has an elliptical polarisation.
This is coherent with the propagation of Rayleigh
waves. The other one is linearly polarised and is
nearly vertical.

Following the separation we can measure the veloc-
ity of these two waves. The values obtained (337 m /s
for the source 1 and 480 m/s for the source 2) con-
firm that the elliptically polarised wave is a Rayleigh
wave and indicate that the linear one is an acoustic
wave which propagated in the air.

5 Conclusion

We have shown using synthetic data and real data
that the application of fourth order algorithms for
source separation is able to recover the elementary
components of combined polarised waves. This result
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Figure 6: Lissajou plots of the initial sources and o
the sources obtained at order 2 and 4 :

has potentially a wide field of application in the areas
concerned with combinations of polarised waves. For
example, remote sensing with radar, communications
with polarised waves and the list go on.
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