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ABSTRACT

The contrast approach has become classical for sepa-
rating independent sources. It involves whitening (with
decorrelation) as a pre-processing step. Here we pro-
pose a new contrast applicable to correlated signals, as
long as they have unit power. The corresponding sys-
tem involves output Automatic Gain Controls (AGC).
An adaptive contrast maximization is proposed. Its
achievements are shown to outperform the adaptive im-
plementation of the classical pre-whitened contrast.

1 INTRODUCTION

In recent years, the problem of source separation has
received an increasing interest because of the wide do-
main of potential applications, e.g. for telecommuni-
cation purposes and for image reconstruction. Source
separation enters the general category of \signal sepa-
ration" where several, say N , unknown, random (time)
input signals ai(t) are jointly propagated inside a linear
multiple input channel F with multiple outputs xj(t)

1.
The problem is that each xj is a mixture of several ai
and that the mixing e�ect of the channel F is usually
unknown. Hence, the di�erent signals ai are unobserved
and not easily separated. In this paper, we consider the
general linear model

x = Fa+ n (1)

where F is a �xed deterministic matrix called \mix-
ture", a is the vector of input \sources" ai and x is the
vector of outputs xj, observed after the mixture. The
additive noise n, if any, is assumed to be zero-mean and
independent of a. For instance, in the telecommunica-
tion context, this model is suitable for the case of open
atmosphere (wireless) radio communications with sev-
eral transmitted interfering sources ai and several re-
ceivers arranged in an antenna, and bringing multiple
information xj. Then F represents the propagation in
the atmosphere. Another example is the image recon-
struction context, where the input sources ai are the
light intensities at the various pixels of the true image,

1Hereafter the time t is assumed discrete.

and the outputs xj characterize the observed image pix-
els after the distorting and blurring process F . The
latter is caused by the electronics or by the optics of
the camera. There are many other contexts where the
model (1) is relevant.

Usually the problem is attacked in a supervised mode.
There is a learning phase, where some \teacher" pro-
vides many examples of associated pairs (a;x). This
permits the identi�cation of the matrix F and of some
kind of inverse for F , denoted H.

After this learning phase the separation task is solved
by computing the vector

y =Hx (2)

which will be essentially equal to a when the noise is
low and when identi�cation is good.

In the so-called unsupervised or self-
learning approaches2, examples of pairs (a;x) are not
available. Identi�cation of F and H must be done with
the sole knowledge of a sequence of observed x, or pos-
sibly of its statistics: both the input a and the matrix
F are unknown. It is of course impossible to solve this
problem without any additional knowledge. In previous
studies on source separation, the key assumption is al-
ways the statistical joint independence of the N sources

ai.

Without any loss of generality it can be assumed that
the ai have unit power:

E[a2
i
] = 1 (3)

2 CONTRAST FUNCTIONS

2.1 Contrast for whitened inputs

Contrast functions have been introduced in [1] to cancel
linear mixing e�ects which a�ect independent sources.
Let C be an (N � N ) matrix, and assume that

y = Ca : (4)

2These approaches are often called blind. We think that

this denomination should be avoided because of its pejorative
connotation.



Then it has been shown that the yi are equal to the
sources ai up to N arbitrary non-zero gains and to an or-
der permutation, if and only if (i�) some contrast func-
tion such as

Jw(y) =
NX
i=1

jKyiyi j (5)

is maximized by the matrix C. In eq. (5), Kyiyi is
the fourth order self-cumulant of the random variable
yi. Moreover a and thus y are taken zero-mean (with a
slight loss of generality). Hence Kyiyi = E[y4

i
]�3(E[y2

i
])2.

It has also been shown that the maximum occurs i�

C =DP (6)

where D is an invertible diagonal matrix and P an ar-
bitrary permutation matrix.3 However this result is re-
stricted to \white" vectors y in the sense that

E[yiyj] = 0 for i 6= j; i; j = 1; : : : ; N (7)

E[y2
i
] = 1 for i = 1; : : : ; N : (8)

When the N sources are observed through N (possibly
noisy) linear mixtures xj, i.e., when one observes a vec-
tor

x = Fa+ n ; (9)

this type of result allows to \separate" the N sources ai
by successively

(i) \pre-whitening" the vector x, i.e. linearly transform-
ing it into a vector w which exhibits properties (7) and
(8),

w =Wx (10)

(ii) then processing the vector w with the proper sepa-
ration stage

y =Hw (11)

under the constraint that the matrix H is unitary
(HT = H�1) so that the white character is retained
for y.

The corresponding system is called \pre-whitened
separation" (PWS) for its adaptive implementation. In
our implementation W = �T where T is a lower tri-
angular matrix with unitary diagonal entries ensuring
decorrelation (7), and the regular diagonal matrix �
accounts for N AGC ensuring the normalizations (8),
while the separation matrix H is achieved with Givens
rotations [1].

In the present communication, we perform source sep-
aration directly with correlated vectors y. This re-
tains the N normalizing constraints (8) but cancels the
N (N � 1)=2 correlation constraints involved in eq. (7).

3
i.e. P has one and only one nonzero entry (which is 1) per

row and column.

2.2 Contrast for correlated inputs

For correlated signals, the contrast expression has to
include cross moments. For instance, when y is \nor-
malized" according to (8), and under the assumption,
retained below, that the kurtosises of all the sources ai
have the same sign, denoted ", the function

J 0

n
(y) =

NX
i=1

jKyiyi j �
NX

i;j=1; i<j

jKyiyj j (12)

where Kyiyj is the fourth order cross cumulant, namely

Kyiyj = E[y2
i
y
2
j
]� 2(E[yiyj ])

2 � E[y2
i
]E[y2

j
]

is a contrast. Dropping the unnecessary constant values
yields the new contrast

Jn(y) = "

NX
i=1

E[y4
i
]�

NX
i;j=1;i<j

"fE[y2
i
y
2
j
]� 2(E[yiyj ])

2g :

(13)
This property has been proved in [4], but it has not been
checked by experiments, and no implementation is given
to perform maximization of (13).

3 ADAPTIVE SOURCE SEPARATION

We provide a novel adaptive algorithm to separate the
sources, based on the contrast Jn(y) and called NS for
\normalized separation".

The set Y of de�nition for Jn(y) is the set of normal-
ized vectors. As a result, the separation task involves a
post-processing of the kind

y = �z (14)

where the diagonal matrix � ensures the normalizing
condition (8) for the yi. This can be done by placing
an adaptive gain control (AGC) on each coordinate yi.
The proper separation stage, with matrixH, comes �rst
according to

z =Hx (15)

where the diagonal entries of matrix H can be con-
strained to unity without loss of generality.

It remains to estimate the separation matrix such that
the contrast Jn(y) in (13) is maximum, or equivalently,
such that the cost c(H) = �Jn(y) is minimum. Our
general strategy will be adaptive, based on gradient al-
gorithms.

First a deterministic procedure is to reach the mini-
mum of c(H) by an iterative algorithm which updates
H with the opposite gradient increment

4hi = �
�

2
5hi

c(H) i = 1; : : : ; N (16)

In this equation hi = (hi1; : : : ; hiN)
T denotes the i-th

row of the separation matrixH, and � is a small positive



step-size. Accordingly, the optimumH will be found as
the limit of the sequence

H(n) =H(n � 1)�
�

2
5H c(H)

��
H=H(n�1)

: (17)

Very often, it is possible to express the cost c(H) as an
expectation according to

c(H) = EH [C(H;x)] (18)

where the notation EH indicates an expectation, condi-
tioned by the value of H: the expectation is performed
with the probability distribution of the observed vector
x. Then

5hi
c(H) = EH [5hi

C(H;x)] (19)

The so-called \adaptive algorithm" is simpler. It con-
sists in dropping the expectation involved in (19): the
matrixH is updated each time a new observation x(n)
is measured according to the time recursive algorithm

hi(n) = hi(n�1)�
�

2
5hi

C(H;x(n))
��
H=H(n�1)

(20)

where the increment is evaluated with H in the state
H(n�1) which is available before the observation x(n)
is gained. The matrix H(n) generated by (20) is, like
x(n), a stochastic matrix. This algorithm enters the
category of stochastic approximation, for which the sta-
bility and convergence investigations are, in general, dif-
�cult [3]. Yet, in many cases a few theoretical results
can be obtained, while the algorithm turns out to be
e�cient in practice.
The diagonal matrix � in (14) will adaptively imple-

ment the N output gain controls �i in order to ensure
(8)

yi(n) = �i(n � 1)zi(n) (21)

i(n) = i(n� 1) + � [1� y
2
i
(n)] ; � > 0 (22)

�i(n) =
p
i(n) (23)

The second issue is the adaptation of the front sepa-
ration matrixH. Now according to (20)

C(H;x) =

NX
i=1

(�"y4
i
) +

NX
i;j=1; i<j

"(y2
i
y
2
j
� 2yiyjE[yiyj ])

(24)
where y follows from x through (14) and (15). To sim-
plify, consider only the case of N = 2, with the following
parametrization

H =

�
1 h1

h2 1

�
(25)

Clearly

�
1

2
5H C(H;x) =

2X
i=1

(2"y3
i
)5H yi �

"

2
5H fy21y

2
2

�2y1y2E[y1y2]g : (26)

According to (14), (15) and (25)

@y2

@h1

=
@y1

@h2

= 0 (27)

Moreover it is easy to check that the normalizing prop-
erty (8) implies

@yi

@hi

= �i(xj � �iyi(E[x1x2] + E[x
2
j
]hi)) (28)

where (i; j) = (1; 2) or (2; 1). Plugging (27) and (28)
into (26) yields the adaptive gradient algorithm:

�hi = ��if"(2y
3
i
+ yjE[y1y2]� yiy

2
j
)g �

(xj � �iyi(E[x1x2] + E[x
2
j
]hi)) +

�"y1y2�ifE[x1x2](�jhj � �iE[y1y2]) +

E[x2
j
](�j � �ihiE[y1y2])g (29)

where, again, (i; j) = (1; 2) or (2; 1). In these equations,
the quantities are evaluated with the n-th observation
x(n) for x, and with the separating system �H in the
state �(n� 1)H(n� 1):

z(n) =H(n� 1)x(n) ; y(n) = �(n� 1)z(n) (30)

Finally, the expectation E[y1y2] (and E[x21], E[x22],
E[x1x2]) which appear in (29) can be estimated via the
LMS-type algorithm

M (n) = M (n� 1) + �m[m(n)�M (n� 1)] (31)

where m(n) is the n-th trial of y1y2 (and of x
2
1; x

2
2; x1x2),

and �m is a small positive step-size.

The joint adaptive formulae (29) - (31), plus the AGC
formulae for �(n) constitute an adaptive source separa-
tion system, which we call the \Normalized Separation"
(NS) system.

4 COMPUTER SIMULATIONS

To investigate the separation performance of a method,
we use the so-called \separation index" s(C) [4] which
depends on the overall matrix C = �HF (mixture F
followed by separation �H) and is worth

s(C) =
1

2

2
4X

i

0
@X

j

c
2
ij

max
`

c
2
i`

� 1

1
A

+
X
j

0
@X

i

c
2
ij

max
`

c
2
`j

� 1

1
A
3
5 : (32)

Clearly this positive index is zero i� C is of the kind (6)
characteristic of separation.
Two mixtures are considered

F 1 =

�
1 0:6
0:4 1

�
; F 2 =

�
1 �0:6
0:4 1

�



and there is no noise. Two cases of sources are consid-
ered:
Case 1: The sources are binary. Fig. 1 (resp. Fig. 2)
shows the plots of the separation index, averaged over
50 independent trials for the respective systems PWS
and NS using mixture F 1 (resp. F 2). Clearly NS has
better performance than PWS.
Case 2: The sources take the four values�1=

p
5, �3=

p
5

with equal probability. They are called 4-PAM. Fig. 3
(resp. Fig. 4) shows the plots of the separation index,
averaged over 50 independent trials for the respective
systems PWS and NS using mixture F 1 (resp. F 2).
Clearly NS has again better performance than PWS.
In conclusion, a novel adaptive algorithm is proposed

which does not require a pre-whitening stage and thus is
applicable with correlated signals. Its performances are
shown to outperform those of the classical two stages
algorithm (with whitening) in the four presented cases.
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Figure 1: Case 1, averaged index using mixture F 1.
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Figure 2: Case 1, averaged index using mixture F 2.
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Figure 3: Case 2, averaged index using mixture F 1.
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Figure 4: Case 2, averaged index using mixture F 2.


