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ABSTRACT

This paper investigates the problem of channel equalisation
in digital cellular radio (DCR) application. DCR systems are
affected by cochannel interference (CCI), intersymbol inter-
ference (ISI) in presence of additive white Gaussian noise
(AWGN). Here we propose a fuzzy equaliser to equaliser
communication channels with these anamolies. This equal-
iser performs close to to the optimum Bayesian equaliser
with a substantial reduction in computational complexity.
The equaliser is trained with supervised and unsupervised
scalar clustering techniques in sequence, and consist of a
fuzzy equaliser with a preprocessor for CCI compensation.
Simulation studies have demonstated the performance of the
proposed technique.

1 INTRODUCTION

Digital cellular radio (DCR) communication systems en-
counter co-channel interference (CCI), adjacent ahannel in-
terference (ACI), intersymbol interference (ISI) in the pres-
ence of additive white Gaussian noise (AWGN). The CCI
is caused due to frequency reuse and the frequency spacing
in different cells contribute to the ACI. While these effects
affect the DCR in particular, the effects of ISI due to nar-
row band channel characteristics affect all digital commu-
nication systems in general. Adaptive equalisers [1] are used
in communication receivers to mitigate one or more of these
effects. In DCR applications CCI limits the performance of
the equalisers. Generally linear fractionally spaced equal-
isers (FSE) have been used for equalisation of such channels
[2, 3]. These equalisers treate CCI as a cyclostationary inter-
ference. The performance of these equalisers is limited due
to the linear decision boundary provides by linear equalisers.

Nonlinear techniques have been used for equalisation of
communication channels corrupted with CCI and AWGN [4,
5]. The nonlinear equalisers provide superior performance
compared to linear equaliser due to their ability to form non-
linear decision boundaries. The upper performance bound of
these equalisers is determined by the Bayesian equaliser [6].
Fuzzy filters [7] are nonlinear filters and they have been used
for equalisation in a variety of communication systems [8, 9].
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Recently the close relationship between Bayesian equalisers
and fuzzy equalisers [10] has been demonstrated. Several
nonlinear techniques have been proposed for the equalisation
of channels with CCI [11–13]. The performance of these
nonlinear equalisers id limited to low interference in high
noise or low noise in high interference. Chen et. al. [14]
proposed the Bayesian decision feedback equaliser (DFE)
to mitigate the effects of CCI, ISI and noise. Although this
equaliser provides good performance it suffers from a large
computational requirement. This paper presents an extension
of work reported in [15] and [10] for CCI suppression.

This paper is organised in 4 sections. Following the in-
troduction, section 2 discusses the communication problem
used here. Section 3 derives the Bayesian equaliser decision
function for CCI suppression and also proposes the fuzzy im-
plementation of this equaliser. Section 4 provides some sim-
ulation results and finally concluding remarks are provided.

2 SYSTEM MODEL

The discrete time communication system used in this prob-
lem is presented in Figure 1. The channel and the co channels
are finite impulse response (FIR) filters represented by

Hi(z) =

pi�1X
j=0

ai;jz
�j 0 � i � n (1)

Herepi andai;j are the length and tap weights ofith chan-
nel impulse response.H0(z) is the desired channel and
Hi(z); 1 � i � n are the interfering co-channels. Only the
transmitted signals0(k) of the desired channel is available
at the receiver during training period. Without loss of gen-
erality it can be assumed that the communication system is
binary. The transmitted sequencessi(k); 0 � i � n are mu-
tually independent and are taken from independent identical
distributed (iid) data set with values+1 or�1.

The input to the equaliser forms the observation vector
from channel output. Each of the component of this vector
can be presented as

r(k) = br(k) + rco(k) + �(k) (2)

Herebr(k) is the desired received signal,rco(k) is the in-
terfering signal,�(k) is the noise component andk specifies
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Figure 1:Discrete time model of the DCR system affected by
CCI, ISI and AWGN

the time instant. The noise�(k) is assumed to be Gaussian
with variance�2

�
and is uncorrelated with the data. With this

the signal to noise ratio (SNR), signal to interference ratio
(SIR) and the signal to interference noise ratio (SINR) can
be represented as

SNR = �2
s
=�2

�
(3)

SIR = �2
s
=�2

co
(4)

SINR = �2
s
=(�2

�
+ �2

co
) (5)

Here �2
s

and �2
co

represent the signal power and the co-
channel signal powers respectively. The task of the equaliser
is to estimate the delayed transmitted sequences0(k � d)

based on the channel observation vectorr(k) = [r(k); r(k�

1); :::r(k�m+ 1)]T . Herem is the order of the equalizer.

3 BAYESIAN EQUALISER FOR CCI SUPRESSION
AND ITS FUZZY IMPLEMENTATION

In this section we derive the Bayesian equaliser decision
function for CCI (BayesianCCI) and propose its fuzzy im-
plementation.

3.1 Bayesian equaliser for CCI suppression

The optimal decision function of a finite memory Bayesian
equaliser in presence of ISI and AWGN can be expressed as
[6]

f(r(k)) =
nsX
i=1

wi exp

�
�kr (k)� cik2

2�2�

�
(6)

Herens is the number of channel states equal to2po+m�1,
wi are the weights associated with each of the centres.wi

is +1 if ci correspond to a positive channel state and -1 if it
represents a negative channel state.

To derive the relationship for BayesianCCI we assume
that there is only one co-channel. In the presence of CCI the
interfering signalrco(k) = [rco(k); rco(k � 1); :::; rco(k �

m+1)]T will havens;co = 2p1+m�1 co-channel statescco;l,
where1 � l � ns;co corresponding toeach of the channel
states. The presence of the co-channel states will modify the
decision function as

fCCI(r(k)) =
nsX
i=1

ns;coX
l=1

wi exp

�
�kr (k)� ci � cco;lk2

2�2�

�
(7)

This forms the optimum solution for a symbol spaced equal-
iser decision function when the channel is corrupted with
CCI, ISI and AWGN.

3.2 Fuzzy equaliser for CCI compensation

We proposed the fuzzy implementation of Bayesian equaliser
in [10]. This equaliser can be represented as

f(r(k)) =

Pns

i=1
wi

�Qm�1

l=0
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il

	
Pns

i=1

�Qm�1

l=0
 
jo

il

	 (8)

where:
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(9)

Here (8) provides the normalised form of the decision func-
tion, in (6) and in (9)j ranges0 � j �M�1 withM = 2po

and is the number of scalar channel states. This equal-
iser presented by (8) represent a fuzzy system with Gaus-
sian membership function (9), product inference, singletons
fuzzifier and centre of gravity defuzzifier [7]. Modification
of the membership function to
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can provide a powerful tool to compensate CCI. Heremax

refers to the maximum of the exponential function for dif-
ferent values of� ranging0 � � � M1 � 1 andM1 = 2p1

constitute the scalar co-channel states. However in actual im-
plementation, the membership function in (10) can be eval-
uated with following function, with substantial reduction in
computational complexity.
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Heremin performs minimum operation to find the closest
scalar co-channel state corresponding toeach of scalar chan-
nel states with respect to the input scalar. The schematic of
the co-channel equaliser with fuzzy implementation is shown
in Figure 2. Here the input scalar is fed to the member-
ship function generator which are centred at the scalar chan-
nel states. The output of the membership function gener-
ator is delayed and this forms the membership function for
previous received signal samples. The product block hasns
sub blocks and each of these sub-blocks receive membership
functions from one of the centres corresponding toeach input
scalar. These membership functions are suitably combined to
provide the modified channel state output. The membership
function generators consist ofM0 membership function sub-
blocks. Each of the sub-blocks hasM1 centres. The closest



centre to the corresponding input scalar provides the mem-
bership function to the product block. The product blocks
corresponding to the positive and the negative channel states
are suitably combined to provide the equaliser output.
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ŝ(k-d)

s

3

1

ψ 0

m-1 m-1

1 M-1

m-1

0

M-1

Fuzzy Equalizer

a+b
a-b

c

n  M-1s

to

10

10

n  M-1s

to

10

i m-1to
n   M-1

 (   (k))rf

Product Block

Center Output Computation

T T T T T

c

ψ ψ ψ ψ

ψ

ψψ ψ ψ ψ ψ

ψ ψ ψ ψ sf

i0

i1

i0

i1

i m-1

ψ

c c− c c− c c−
1

ψ

ψ

Figure 2:Schematic of a fuzzy co-channel equaliser

3.3 Fuzzy Equaliser training

The fuzzy CCI equaliser discussed above can be trained in
2 steps. The first step in training involves estimation of the
scalar channel and scalar co-channel states and the second
step involves learning weights of the output layer.

Step-I: Determination of channel and co-channel states
The scalar channel and scalar co-channel states of the equal-
izer can be estimated by a clustering algorithm.

Channel States:Equalizer vector channel states can be es-
timated from scalar channel states, which can be determined
from the noisy received scalars with a supervised clustering
algorithm during the training period. The noise is zero mean
and co-channel states occur in positive and negative pairs.
Their effect will cancel in the process of channel state estim-
ation. The SINR can be estimated from the supervised clus-
tering during the scalar channel state estimates. The scalar
channel states estimated, along with the training signal se-
quence producing them, can be arranged to form the vector
channel states[14].

Co-channel States: Once the channel states have been
determined the channel residuerres(k) = r(k)�cj

s
(cj

s
is the

scalar channel state) can be estimated. The channel residue
arises from the CCI and AWGN. An unsupervised clustering
algorithm such as k-means clustring or improved k-means
clustering [14] algorithm can be used to estimate the scalar
co-channel states and the noise variance (��).

Step-II Weight Training: On completion of the channel
and co-channel scalar state estimation, the equalizer can be
constructed. The initial weights(wi) of the equalizer can be

assigned as+1 if ci correspond to positive channel state else
they can be assigned as�1. The LMS algorithm can be used
to fine tune the equalizer weights so as to reduce the error
at the equalizer output due to the channel states estimation
error.

4 SIMULATION RESULTS

To study the performance of a fuzzy equaliser in CCI
compensation, consider a channel with impulse response
H0(z) = 0:5 + z�1 corrupted with CCI from the channel
H1(z) = �(1 + 0:2z�1). The SIR can be varied by vary-
ing the factor�. We observe the decision boundaries for
the optimum BayesianCCI equaliser and the fuzzy equal-
iser proposed in this section for a SNR of 15dB and under
SIR of 5dB and 10dB. The decision boundaries provided by
the BayesianCCI equalisers and the Fuzzy equalisers are
presented in Figure 3. From the decision boundaries it is
observed, that the fuzzy equaliser provides near optimal de-
cision boundary with only 8 channel states in comparison to
BayesianCCI equaliser which uses 64 channel states.
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Figure 3: Fuzzy and BayesianCCI equaliser decision
boundary (a) SIR=5dB and (b) SIR=10dB

In Figure 4 the decision boundary for the optimal equaliser
without CCI is presented. Comparing the decision boundary
of equalisers presented in Figure 3 with Figure 4, suggests
that for this channel and cochannel combination and the par-
ticular SIR, CCI compensation is essential at SIR=5dB but is
not very essential at SIR=10dB.
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Figure 4: Bayesian Equaliser decision boundary for
SNR=10dB and SIR=1

In the next part of the experiment we studied the bit er-
ror ratio (BER) performance of the equalisers in presence of
one CCI. The channel and co-channel models considered are



H0(z) = 0:3482 + 0:8704z�1 + 0:3482z�2 andH1(z) =

�(0:6 + 0:8z�1). The SIR was set to 5dB and 10dB and the
equaliser order and decision delay were set tom = 4 and
d = 1 respectively. Figure.5 presents the BER performance
of the BayesianCCI equaliser, Bayesian equaliser treating
CCI as noise and the fuzzy equaliser.
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Figure 5:BER performance of equalisers

Here, the BayesianCCI equaliser uses 2048 channel states
whereas, the fuzzy and the Bayesian equalisers use only 64
channel states for their decision function evaluation. From
the performance curves its is seen that the fuzzy equaliser
performs close to BayesianCCI equaliser but the perform-
ance of Bayesian equaliser treating CCI as noise is far from
optimal. We have seen similar results for other channel and
co-channel combinations as well.

5 CONCLUSION

In this paper we have demonstrated the capability of fuzzy
equaliser to suppress co-channel interference. This equaliser
is similar to the equaliser proposed in [10] with a different
membership function generator at the equaliser input. This
membership function generator can be used as a preprocessor
under moderate to severe CCI and can be removed when CCI
is very low, Providing a performance trade off with compu-
tational cost. The computational complexity of this equaliser
can be further reduced by using different types of inference
rules and defuzzification techniques [10].
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