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ABSTRACT

Point pattern matching problem consists in identifying
similar point patterns in two point sets which di�er one
each other in scale, orientation angle or position. A
new objective function for the problem of point pattern
matching is proposed here. The function scores not only
the exact matching situations between patterns, but also
the inexact ones. It has only one global maximum in the
desired solution, and hence implosion cases which occur
for very low scale factors are avoided. An e�cient al-
gorithm for the evaluation of the objective function is
proposed. The algorithm requires a preprocessing stage
to label the Voronoi regions of one of the point sets.
Then, a genetic algorithm is used to maximize the pro-
posed objective function.

1 INTRODUCTION

Point pattern matching problem consists in identifying
corresponding points (control points) between two given
sets. In other words, the problem is to �nd common
patterns between two point sets which may di�er one to
another in scale, orientation angle and position.

Let P and Q be two given point sets. The problem
of point pattern matching can be reformulated as deter-
mining the geometrical transformation (1) which applied
to the set P superpose a maximumnumber of its points
onto corresponding points in set Q�
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denote the coordinates of

a point p 2 P before and after applying the geometri-
cal transformation. The four parameters that uniquely
de�ne the geometrical transformation (1) are: the scale
factor s, the orientation angle � and the translation val-
ues tx; ty.
Several algorithms have been already proposed for

solving the point pattern matching problem. However,
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most practical methods provide only approximate solu-
tions. In the context of �ngerprint image registration
a generalized Hough transform has been used in [1] to
estimate the scale factor, orientation angle and trans-
lation parameters between two �ngerprint images. The
�ngerprint registration reduces to point pattern match-
ing as long as each �ngerprint is represented as a set of
feature points called minutiae. The method has a com-
plexity of O(N2) and requires a large amount of memory
space to store the accumulator which is a four dimen-
sional array. In [2], the case when the scale factor is
unitary is considered. The matching problem is thereby
reformulated as a 0-1 integer programming problem and
an arti�cial neural network is proposed to solve it. A
genetic algorithm for point pattern matching with ap-
plication in two-dimensional shapes extraction has been
proposed in [3]. There the scale range is limited to a
very small interval around 1.

This paper is organized as follows. An objective func-
tion which allows a very large scale range between point
patterns is derived in Section 2. A genetic algorithm is
then proposed in Section 3 for the maximization of the
objective function. Section 4 shows several simulation
results for di�erent point pattern matching situations.

2 THE OBJECTIVE FUNCTION

The objective function associates a real value (named
objective value) to each geometrical transformation T =
(s; �; tx; ty). A valid objective function has to be chosen
such a way to have a global extremum for the geomet-
rical transformation T � which represents the solution of
the problem.

Denote by PT the set of points obtained from P by
applying the geometrical transformation T . The more
points overlap in PT and Q, the better the geometrical
transformation T is. Thus, a very simple objective func-
tion is obtained by associating to each transformation T ,
an objective value equal to the number of points from
P
T which match the corresponding points of Q. The

solution of the problem is the transformation T � which
maximizes this objective function. However, the maxi-
mization of a such objective function is very di�cult due



to the very steep peaks that occur in the searching space.
There is no information about how close the points in
P
T are to the corresponding points in Q. Therefore, the

inexact matching situations are completely ignored and
small di�erences between patterns are treated the same
as higher ones. This objective function is rather dis-
crete making any gradient based technique ine�ective.
Even genetic algorithms provide poor performance on
such objective functions.
In order to obtain more continuous objective func-

tions, the inexact matching situations has to be taken
into account. A defocusing technique, which allows the
points of PT to contribute to the objective value even
they are only in a neighborhood of the corresponding
points of Q is described in [3].
In our work, the Euclidean distances between the

points of PT and their corresponding points of Q, are
used to compute the objective value. Let r

�
pTi
�
de-

note the minimumEuclidean distance between the point
pTi 2 P

T and a point q 2 Q. That is:

r
�
pTi
�
= minfd

�
pTi ; q

�
jq 2 Qg; (2)

where d
�
pTi ; q

�
is the Euclidean distance between the

points pTi 2 P
T and q 2 Q.

The contribution of each point pTi 2 P
T to the objec-

tive value is given by the function:
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where � is a tuning parameter.
The objective function is then obtain by summing the

contributions �i (T ) of all points p
T
i 2 P

T :

f (T ) =

PP

i=1 �i (T )

P
; (4)

where P = jPj is the cardinality of set P.
The objective function f (T ) takes real values between

0 and 1. If all points pTi 2 P
T are overlapped exactly

with P points of Q then the objective function is 1.
If the transformation T � is the desired solution of the

point pattern matching problem, then it is a maximum
of the objective function.

2.1 Implosion Cases

The function f (T ) could be used for solving the point
pattern matching problem if the scale factor is �xed or
restricted to a very small range. This function has more
then one maxima, some of them even greater then the
desired one. There are many transformations eT which
could be chosen such that f( eT ) > f(T �). For a very low
scale factor there is some translation values for which all
the points of PT are in a neighborhood of a single point
qj 2 Q. The contribution (3) of each point is quite
large and hence the objective value is large. Here, such
situations are called implosion cases.

Usually implosion cases are avoided either by impos-
ing a unity scale factor [2], or by restricting the scale
range [3].
In order to avoid implosion cases, we developed an ob-

jective function F (T ) which has only one global maxi-
mum in the desired solution T �. The new function takes
into consideration only the distance between each point
qj 2 Q and its closest point pTi 2 P

T among all PT

points which occur in the neighborhood of qj.
Let Rj denote the set of all points pTi 2 P

T which
occur in the neighborhood of the point qj 2 Q

Rj = fp
T
i jr
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The minimum distance between a point qj and its
nearest neighborhood is de�ned as:
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where jRjj denote the cardinality of set Rj. If there is
no point pTi in the neighborhood of qj (jRjj = 0) the
minimum distance e (qj) becomes in�nity.
Using this notation, a contribution function similar

with (3) is de�ned for each point qj 2 Q:

�j (T ) = exp
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and the new objective function is:

F (T ) =

PQ

j=1�j (T )

Q
; (8)

where Q = jQj denotes the cardinality of set Q.
The function F has a unique global maximum in the

desired solution T �. Implosion cases are totally elimi-
nated because only one point of PT from the neighbor-
hood Rj of each point qj 2 Q is taking into considera-
tion for objective value computation. If, for a very low
scale factor, almost all points of PT are in the neighbor-
hood of a single point of Q , then the objective value
approaches to 1=Q. It does not have any more maxima

for the transformations eT with low scale factors.

2.2 The Evaluation of the Objective Function

The computation of (8) requires to identify the sets Rj

and also to compute some Euclidean distances. These
operations are time consuming and are avoided here by
implementing a preprocessing stage. In this stage two
integer matrixes R and E are constructed. Each matrix
has the same dimensions as the image from which the
set Q has been extracted.
The matrix R resembles the Voronoi cells of the Q

points. Each entry in the matrix R has an integer value
between 1 and Q. This value represents the label j as-
sociated with the central point qj 2 Q of the current
Voronoi cell. The matrix E resembles an integer ap-
proximation of the Euclidean distance between each Q
point and all the points that are in its Voronoi cell.



In other words, R (x; y) is equal with the label j of
the cell in which the point (x; y) occurs and E (x; y)
is an integer approximation of the Euclidean distance
between the point (x; y) and the central point qj of the
cell.

The low computational complexity (of order O (1=N ))
method for Voronoi tessellation and the integer approx-
imation of Euclidean distance in Z2, both proposed in
[4] are used here to compute the matrixes E and R in
the preprocessing stage. An example of these matrixes
for a set of 30 points is shown in Fig. 1.
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Figure 1: An example of E (left) and R (right) matrixes
for a set of 30 points. The integer values are repre-
sented by gray levels from white (minimum value) to
black (maximum value).

The algorithm for the evaluation of the objective func-
tion is shown in Fig.2. By using the matrixes E and
R, already created in the preprocessing stage, the algo-
rithm achieves low computational complexity (of order
O (N )).

PROCEDURE ObjectiveFunction
INPUT: T = (s; �; tx; ty) - geometrical transformation
OUTPUT: F - objective value F (T )
e[j] MAXINT for all j = 1; : : : ; Q
F  0
P
T
 T (P) - apply the transformation T onto set P

FOR each point pT =
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END IF

END FOR

FOR j = 1; : : : ; Q DO

F  F + exp (�e [j] =�)
END FOR

F  F=Q

END PROCEDURE

Figure 2: The algorithm for objective function evalua-
tion.

3 THE GENETIC ALGORITHM

3.1 Encoding Scheme

Each chromosome represents a unique geometrical
transformation in an encoding form. The chromosome
encoding scheme used in our work is similar with that
described in [3]. Each chromosome has a bit string rep-
resentation (9) which resembles in a quantized fashion
the four parameters of the geometrical transformation.

C =

0B@ sz }| {
110 � � �01| {z }
Nsbits

�z }| {
100 � � �11| {z }
N�bits

txz }| {
011 � � �10| {z }
Ntxbits

tyz }| {
101 � � �00| {z }
Ntybits

1CA : (9)

The range of each parameter is uniformly quantized
and the Gray code is used in (9) for binary represen-
tation. The use of Gray codes avoid those situations
when close values di�er in almost every position of their
binary representation.
The �tness of a chromosome is equal with the ob-

jective value F (T ) of the geometrical transformation T

encoded by it.

3.2 Selection and Replacement Strategies

The algorithm maintains the size of the population con-
stant during all iterations. At each iteration (genera-
tion) a number of parent chromosomes are selected from
the population. The higher the �tness value of a chro-
mosome the higher the probability to be selected. The
Roulette Wheel Selection procedure [5] is used here.
The subpopulation (o�spring), generated by perform-

ing genetic operations (crossover and mutation) onto the
parents, replaces the entire old population. This re-
placement strategy called Generational Replacement [6]
is combined here with an elitist strategy were the best
chromosome always survives intact from one generation
to the other.

4 EXPERIMENTAL RESULTS

Several point pattern matching experiments using the
proposed algorithm has been performed. About 200 it-
erations are su�cient in almost all cases to obtain a
relatively close approximation of the real transforma-
tion. The encoding scheme information of the geometri-
cal transformation parameters, used in all experiments,
are shown in Tab.1. Using this encoding scheme each
chromosome has a length of 42 bits.

Parameter Range Number of bits

s 0: : :10:23 10

� 0: : :2� 10

tx and ty �1024: : :1023 11

Table 1: The ranges and the bit numbers used to encode
the geometrical transformation parameters.



No: P Q k Iterations s ŝ � �̂ tx t̂x ty t̂y

1 30 30 30 190 2:00 2:00 0:25� 0:25� 297 297 �484 �484

2 110 100 50 154 3:50 3:55 0:33� 0:34� 578 592 �975 �987

3 110 100 50 196 0:50 0:51 0:25� 0:25� 256 253 90 84

4 110 100 40 185 0:50 0:50 0:25� 0:31� 262 293 78 83

5 110 100 30 199 0:25 0:27 0:50� 0:51� 319 328 192 191

6 110 100 20 190 0:75 0:77 0:66� 0:66� 510 511 183 171

Table 2: Some experimental results for di�erent geometrical transformations and di�erent numbers k of common
points.

The experimental point sets were constructed as in
[2]. The set P is constructed by randomly selecting P

points in a 512x512 image. An intermediate set of points
is then constructed by randomly deleting P � k points
from P and randomly inserting other Q� k points. Fi-
nally the set Q is obtained by applying a geometrical
transformation T onto the intermediate set. In this way,
a common pattern of k points occurs in both �nal sets
P and Q.
The results of di�erent simulations, for di�erent val-

ues of k, are shown in Tab.2. The real geometrical trans-
formation is denoted by T and the estimated one is de-
noted by bT . For all experiments, the population size is
50, the crossover rate is 0.95, the mutation rate is 0.3
and the parameter � is 100. In all cases, the algorithm
was stopped after 200 iterations. The best chromosome
(geometrical transformation) and the iteration where it
was found are speci�ed in the table.
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Figure 3: The best and mean �tness variations for the
�rst experiment shown in Tab.2.

5 CONCLUSIONS

A new objective function for the problem of point pat-
tern matching has been proposed. The function has
a unique global maximum in the desired solution and
hence implosion cases which occur for very low scale fac-
tors are avoided. Two integer matrixes E and R (Fig.1)

are constructed in a preprocessing stage. Using these
matrixes a fast algorithm for objective value computa-
tion (Fig.2) can be used.
Some simulation examples for di�erent point pattern

matching situations have been as well presented. A ge-
netic algorithm has been used here to maximize the pro-
posed objective function.
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