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ABSTRACT

In this communication, we address the problem of
the recognition and classification of rotated and scaled
stochastic textures. We propose an extension of pre-
vious works, which are mostly based upon the use of
the Fourier transform for the derivation of translation
invariant statistics. More precisely, we suggest the se-
quential use of a 2-D high resolution spectral estimate,
called Harmonic Mean power spectrum density (HM
PSD), which presents a good tradeoff between reliability
and complexity, with the Fourier-Mellin transform from
which rotational and scaling invariants can be derived.
Experimental results on rotated and scaled textures are
presented that show the efficiency of this new technique.

1 INTRODUCTION

Among the different tasks to be performed in computer
vision, from image acquisition towards image interpreta-
tion, some of them are particularly crucial. For example,
while segmenting a real outdoor scene, one would like to
recognize as a same region the perspective projection of
the ground, which is often a textured region. Unfortu-
nately, this region of the scene is intrinsically inhomo-
geneous, i.e. has statistical moments that are globally
translation variant. Few results exist concerning the
segmentation /classification of textures under this trans-
formation group, especially when no prior information
about the scene acquisition geometry is available.

In this communication, we restrict our attention to the
particular image transformation group of positive sim-
ilarities. We address the problem of the recognition of
possibly rotated and scaled (zoomed) textures. Many
works exist concerning the recognition of rotated and
scaled wide-sense patterns, and a dense literature is
available. Two main approaches are available. On one
hand we find structural methods, principally used in
handwritten character recognition. On the other hand
are analytic methods, mostly based upon harmonic anal-
ysis, 1.e. the use of the Fourier transform adapted to
specific transformation groups, with applications for ex-
ample in image registration and pattern recognition (see

for example [8], [9]).
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Recent developments in the field of harmonic analysis
([2], [5]) allow the construction of complete and conver-
gent sets of invariants for 2-D patterns which are also
well adapted to texture recognition. These methods are
based upon the fitting of the Fourier transform to spe-
cific transformation groups (e.g. similitude, displace-
ment).

Our contribution is based upon the latter technique :
using some translation invariant statistical description
of the texture, say the autocorrelation function (ACF)
or its Fourier representation, the power spectrum den-
sity (PSD), it is possible to find a set of features which
are characteristic and invariant under any rotation and
any scaling of the texture. This idea is not a new one,
and 1s known to provide relatively poor results in terms
of texture recognition [10]. However, most techniques
make use of either sample ACFs, or PSDs computed
with the 2-D Discrete Fourier Transform (DFT). As far
as we know, few of them take advantage of so-called
2-D modern spectral analysis methods and of their per-
formances versus DFT-based techniques. An exception
is the work developed by Cohen et al. [4] that use a
2-D Gauss-Markov Random Field (G-MRF) in order to
model the texture : the objective is the same but the nu-
merical treatment requires the optimization of a highly
non-linear likelihood function.

The approach developed herein is two-fold : firstly is
computed a high resolution spectrum estimate called
Harmonic Mean (HM) PSD, which presents a good
tradeoff between accuracy and computational load. Sec-
ondly, the HM PSD is taken as entry of the Fourier-
Mellin transform from which scale and rotation invari-
ants features can be derived.

2 THE PROPOSED METHOD

In the following, we will only be concerned by with
homogeneous random textures, i.e. realisations of sta-
tionary colored (correlated) random fields, although this
method may be applied with some restrictions to deter-
ministic textures. The derivation of a texture recogni-
tion method that is invariant with respect to some trans-



formation group first leads to the problem of finding a
reliable translation invariant description of the texture
: this description must be phase blind, in order to avoid
the search for generic tiles of the texture before applying
some segmentation/classification scheme.

In this work we used the power spectrum density (PSD)
function, that is the Fourier transform of the autocor-
relation function (ACF). The choice of this description
1s justified non only by its phase blindness, but also be-
cause it 1s possible; by using modern spectral estimation
techniques, to compute the 2-D PSD within short term
windows, which may be of great use for a further seg-
mentation of distorted (i.e. locally scaled and rotated)
objects. The other problem lies in the development of
invariant features. For this, we used the Fourier-Mellin
transform, which provides rotation and scale invariant
features for a 2-D pattern.

2.1 PSD Estimation

Many techniques have been developed since the mid sev-
enties within the framework of modern spectral estima-
tion. While some of them rely on some deep princi-
ples (e.g. maximum entropy), many others use some
direct modeling of the statistical interactions between
neighbours on the 2-D lattice (e.g. MRF, autoregressive
(AR), autoregressive-moving average (ARMA) model-
ing). Although their performances are often close to-
gether, their implementation may require in some cases
the optimization of a highly non-linear functional.
Here we chose a causal AR modeling of the texture be-
cause of its computational tractability, and also for the
fact that a class of reliable DSP estimates can be de-
rived from it [1].

More precisely, let Y be a random process on the Z2
lattice, and {y(m,n)}ocm<m—1,0<n<n—1 be a finite re-
alisation of Y. In order to simplify the notation, the 2-D
sequence {y(m,n)} is assumed to be zero mean. Other-
wise the mean should be removed from the image. Then
the first quadrant (1) AR modeling with order (P, P)
of {y(m,n)} is given by :

y(m,n) = Z Zal(k,l) yim —k,n—1)

(k1) €M1
+ wi(m,n) | (1)

where {aj(k,l)} are the Q1 AR parameters, m =
{(k’l) |0 < k < P - 1;0 < l < P - 1;(kal) 3& (0’0)} is
the first quarter plane support and w;(m, n) is a driving
noise sequence with zero mean and variance o?. Then

the corresponding @1 PSD is given by
Pq,(f1, f2) =

2
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where (f1, f2) € [-0.5,0.5] x [—0.5,0.5] are normalised
frequencies. Tt is well known (see [1], [3], [7]) that the
@1 PSD estimate is severely biased due to the choice
of such an anisotropic support for (k,!). However, this
drawback may be considerably reduced by use of the
second quadrant (@2) AR modeling :

y(m,n) = ZZaz(k,l) yim —k,n—1)
(

k,l) €Tz
+ wa(m,n) | (3)
<

where mo = {(k,)) |0 < k< P-1;-P+1<
0; (k1) # (0,0)}, leading to the Q2 PSD Pg,(f1, f2).
Both PSDs can be combined in the following manner to
yield the so-called Harmonic Mean (HM) PSD estimate
[6]:
! ! ! + ! Y
Pam(fi, f2) 2 [ Po,(f1, f2) * Po.(f1, f2)
This spectral estimate has been shown in [3] to provide
results that are comparable with the Maximum Entropy
method, but with a much reduced computational bur-
den. Actually, the set of first and second quadrant pa-
rameters {{a1(k, 1)}k 0yer,> 075 {ao(k, 1)} nyen,, 05} are
obtained through the inversion of symmetric covariance
matrices.
One important skill of the use of a parametric spec-
tral description lies in the fact that the quarter plane
PSD estimates may be computed directly in polar coor-
dinates, which is important for the use of the Fourier-
Mellin transform. For example, we have for the first
quadrant DSP :

Pq,(p,0) =

2
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with p € [0, %] and 6 € [0, 27]. Moreover, due to the fact
that the 2-D PSD is an even function (i.e. symmetric
w.r.t. the null frequency), only one half of the spectral
domain is necessary to describe it, and as a consequence
Pra(p, 0) is m-periodic w.r.t. 6.

2.2 The Fourier-Mellin transform and derived
invariants

Definition 1 (Fourier-Mellin Transform)

Let f: RY*x[0,27r) — R
(p,0) = fp,0)

the Fourier-Mellin transform is defined as :

+o0o 27
M:(v,q) = /p:O /920 p_“’ exp(—iqh) f(p,0) c%p do |
(6)

with ¢ € Z, v € R.



The Fourier-Mellin (FM) integral converges only under
strong hypothesis for f(p,#). For this reason, in [5],
Ghorbel proposed an analytic prolongation of the FM
transform, called AFMT.

Definition 2 (AFMT) With the same notation as
above, the analytic prolongation of the Fourier-Mellin
transform s defined as :

N 400 27 Civtos ] dp
Mi(v,q) = ) p exp(—igf) f(p,6) 7 do
P

=0 =0
(7)
with ¢ €7Z, v € R, and oy € R1T* is a given parameter.

The AFMT is used to avoid the divergence of the
Fourier-Mellin integral for almost all patterns.

The properties of the AFMT are the same as the FM
transform, as shown below.

Property 1 (Effect of rotation and scaling)
If g(p,0) = flap,0 + 5) is a scaled and rotated version

of f(p,0), then
My(v,q) = =T exp(iqB) M;(v,q) (8)

This property can be viewed as the application to the
similitude group of the generalized shift theorem of the
Fourier transform. Note that o and § can be retrieved

by :

- 1/00 ~
_ Mf(0,0) . — ar Mg(o’l)
‘= [Mg(o,o)] g [Mf(O,l)] v

Taking the modulus of both terms in (8) leads to fea-
tures which are invariant under any rotation of the pat-
tern but not under a scaling transformation.

Here we propose to use of the following set of invariants,
inspired from [5].

Proposition 1 Let f(p,0) be a 2-D pattern and
M;(v,q) its AFMT. Then

I¢(v,q) = | My (v,q) [My(0,0)]7HF0/7) (10)

defines a set of invariants under any rotation and scaling
of the pattern.

This particular set of real invariant features does not
have the completeness property (i.e. different patterns
may have the same set of invariants), nor the inversibil-
ity property (i.e. f(p,#) cannot be reconstructed from
It (v,q)). Nevertheless, a set of complex, complete and
inversible invariants can be used (see [5]).

Also for implementation it appears necessary to discre-
tise the AFMT by sampling the v variable. Thus are
computed Mf (p,q) and I;(p, q) with p € Z. Moreover, it
can be shown easily that Mf (—p,—q) = M}‘ (p,q) where
* denotes the complex conjugate, and as a consequence

we have I;(—p, —q) = I (p, q).

2.3 Application of the AFMT to the HM PSD

We propose here to take the above HM PSD as entry
of the AFMT. One can note that another important
effect of using an AR modeling for the texture is the
fact that the corresponding parametric PSD is a regular
(C*) function in the frequency plane. As such, it can
be described by a small set of invariants in the FM rep-
resentation.

However, it should be insured before applying this tech-
nique, that the PSD decreases sufficiently quickly to zero
as p —r % In other terms, the analysis of textures with
too high frequencies should be avoided. Moreover, de-
terministic textures with purely harmonic components
for which the theoretic PSD shows a Dirac distribution
should also be avoided, because the effect of a scaling
does not dilate Dirac functions in the frequency plane.
For each texture to be classified, the corresponding
P (p, 0) is computed, and the set of Ip,,, (p, q) is de-
rived. Finally, a simple Euclidean distance applied to
sets of Ip,,,, (p, ¢) obtained for different textures is used
to evaluate the similarity between textures.

3 EXPERIMENTAL RESULTS

We now present some experimental results obtained
with this method. Figure 1 shows eight pairs of textures
taken from the Brodatz album, each pair with different
relative orientations and/or scaling factors. The objec-
tive 18 to recognize pairs of identical textures among the
whole set of textures, and, in the case of a correct recog-
nition, to provide estimates of the relative angle and the
scaling factor between both textures. The recognition
of a texture pair is made through the minimization of
the Euclidean distance between all sets of invariants.
For each texture, 24 parameters (P = 5 in (1)) were
chosen for the quarter plane causal AR modeling. Let-
ting —3 < p < 3;0 < ¢ < 3 and taking into account the
even symmetry of invariants gave us a set of 25 features
for each texture. In this experiment we chose o9 = 1.0
for the computation of the AFMT.

Figure 2 summarises the results. For all correct recogni-
tion, a double arrow is drawn between textures. Jointly
are given true values and estimates of the scaling factor
and relative angle between pairs of correctly recognized
textures. At first, one can remark that all pairs of tex-
tures were correctly recognized, except for the original
D17 texture ; this is probably due to the highly struc-
tural properties of this texture. Secondly, estimates of
scale factors for correctly recognized textures are often
in agreement with true values, except for highly peri-
odic textures like D68 or D77. However, scale factors
for more random textures like D24 are much correctly
estimated. All these facts seem to confirm the above
remarks relative to the general use of this method. As
for the relative angle, one can note that most estimates
lie in the 10 degrees error range, with for example an
estimate ofqz; = 5% in place of the true ¢ = 0¥ for the



isotropic D29 texture.

4 CONCLUSION AND PERSPECTIVES

In this communication we have presented a new ap-
proach for rotational and scale invariant recognition of
stochastic textures. This method is based upon the com-
bination of, on one hand, high resolution spectrum esti-
mation (AR modeling and HM PSD), and, on the other
hand, the use of the Fourier-Mellin transform and de-
rived invariants. Preliminary experimental results are
encouraging, and will probably be improved by use of
a more efficient spectrum estimate, such as the HMHV
PSD [1]. A first perspective of this work concerns the
development of a segmentation process that is invariant
under rotation and scaling, which is to be very useful
in future computer vision systems. Another perspective
lies in the research for invariants with respect to other
image transformations like stretching or skewing.
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Figure 2: Recognition and estimation of relative angles
and scale factors



