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ABSTRACT

The segmentation of video sequences into regions un-

derlying a coherent motion is one of the most useful

processing for video analysis and coding. In this paper,

we propose an algorithm that exploits the advantages

of both top-down and bottom-up techniques for motion

�eld segmentation. To remove camera motion, a global

motion estimation and compensation is �rst performed.

Local motion estimation is then carried out relying on

a traslational motion model. Starting from this motion

�eld, a two-stage analysis based on a�ne models takes

place. In the �rst stage, using a top-down segmenta-

tion technique, macro-regions with coherent a�ne mo-

tion are extracted. In the second stage, the segmenta-

tion of each macro-region is re�ned using a bottom-up

approach based on a motion vector clustering. In order

to further improve the accuracy of the spatio-temporal

segmentation, a Markov Random Field (MRF)-inspired

motion-and-intensity based re�nement step is performed

to adjust objects boundaries.

1 INTRODUCTION

Motion is one of the most important characteristics to

identify objects in a scene. Motion based segmentation

is therefore very important in applications such as dy-

namic scene analysis, time-to-collision calculation, ob-

stacle detection and tracking of moving objects. More-

over, a motion-based segmentation can be directly used

also in hybrid video coding architectures [1]. Contrarily

to an intensity-based approach [2], motion based seg-

mentation deals with few and large regions that are

likely to identify real moving objects in a scene.

As motion estimation and segmentation are interdepen-

dent, they should be carried out jointly. The algorithms

proposed in literature to solve this ill-posed problem can

be divided in two classes: bottom-up and top-down al-

gorithms.

In [3], given the motion information, regions with the

same a�ne model parameters are assumed as belong-

ing to the same object. These parameters are extracted

from the optical 
ow �eld by means of linear regres-

sion, and temporal segmentation is obtained by cluster-

ing in the a�ne parameter space. The resulting motion

based image segmentation su�ers poor accuracy on ob-

ject boundaries. In [4] a top-down hierarchical motion

segmentation and estimation scheme is proposed. First,

the dominant motion is estimated; the current image

is then compared with the motion compensated one,

and new regions are de�ned as the areas correspond-

ing to large prediction errors. As a new region has been

detected, its boundary is re�ned by superimposing the

results of luminance based segmentation. The same pro-

cedure is recursively applied to every new detected ob-

ject.

In this paper, we propose a cooperative approach for

motion �eld segmentation that gets rid of the draw-

backs of the bottom-up techniques by means of the

advantages of the top-down techniques, and vice-versa.

A global/local motion estimation and compensation is

�rst performed relying on a traslational motion model.

Starting from this motion �eld, macro-regions with co-

herent a�ne motion are extracted by means of a top-

down technique. As the dominant motion assumption

may rise to an under-segmented image, the motion seg-

mentation of each macro-region is re�ned using a bot-

tom up approach. This second stage works on a limited,

highly motion coherent set of displacement vectors, so

that only few clusters are needed and the possible misun-

derstanding of pixel classi�cation is limited. The mov-

ing objects boundaries are �nally adjusted minimizing

a Markov Random Field (MRF)-inspired motion-and-

intensity based function.

The paper is organized as follow. Section 2 describes the

adopted global/local motion estimation algorithm. Sec-

tion 3 is devoted to the description of the proposed mo-

tion segmentation algorithm whereas the segmentation

re�nement algorithm is presented in Section 4. Simula-

tion results and conclusions are given in the �nal Sec-

tions.

2 GLOBAL/LOCAL MOTION ESTIMATION

In natural scenes, where changes in camera position,

orientation and focal length may occur continuously, a

global motion compensation is very important in the



estimation of \physical" motion �elds. Global motion

parameters are therefore evaluated as described in [5].

After global motion compensation, the local motion �eld

is estimated by means of a block matching technique [6].

The algorithm exploits the spatial and temporal coher-

ence characteristics of physical motion �elds and pro-

vides a very smooth motion �eld with a reduced com-

putational complexity.

3 COOPERATIVE MOTION FIELD SEG-

MENTATION

The proposed algorithm is based on two stages: a top-

down and a bottom-up motion �eld segmentation. The

top-down stage, which does not need any initial seg-

mentation to start with nor requires any assumption on

the number of regions in the scene, provides for a �rst

motion �eld segmentation. The bottom-up approach,

which does not assume the presence of any dominant

motion, re�nes the regions characteristics.

3.1 Top-Down Motion Field Segmentation

In the top-down approach, video scenes are hierarchi-

cally segmented into several di�erently moving objects.

Unlike the approach presented in [4], where segmenta-

tion and motion estimation are treated as combined, in

our approach, moving objects are extracted from a given

estimated motion �eld.

Let d(x) = (dx(x); dy(x)) be the estimated motion vec-

tor at pixel x = (x; y) and d�(x) = (dx;�(x); dy;�(x)) be

the motion vector generated at pixel x by the a�ne mo-

tion parameter vector � = (ax0; axx; axy; ay0; ayx; ayy)

where

dx;�(x) = ax0 + axxx+ axyy

dy;�(x) = ay0 + ayxy + ayyy.

First, stationary regions are detected and removed by

means of a thresholding process on the motion vectors;

the remaining connected moving regions form the set

R of �rst hierarchical level objects. To identify the

dominant motion from a given set of motion vectors,

a \Weighted Least Squares" method is adopted [7]. For

every object R 2 R, an a�ne motion parameter vector

�0R is initially estimated by means of a least square pro-

cedure. The residual error between the actual motion

vector d(x) and the displacement d�0
R

(x) given by the

estimated motion parameters �0R is calculated for every

pixel x in the region R as

�x;�0
R

(x) = dx(x) � dx;�0
R

(x);

�y;�0
R

(x) = dy(x)� dy;�0
R

(x):

Hence, a robust estimation of these residual errors stan-

dard deviation �R is carried out [7]. The pixels whose

motion vector shows a residual error greater than h�R
(h ranges from 3 to 1) are considered as outliers and

they are assigned to the next hierarchical level. Each

inlier pixel is then allocated a weight which is inversely

proportional to the residual error

wk(x) = [1� (E
�
k�1

R

(x))=(h�R)
2]2

where

E�k
R

(x) = kd(x)� d�k
R

(x)k2. (1)

At the kth iteration the new set of a�ne parameters

for the inlier pixels of object R is obtained by weighted

least squares. The process "weighting coe�cients cal-

culation - weighted least squares estimation" is then it-

erated until the number of motion vectors inside the

region reaches an asymptotic value. This procedure is

performed for every hierarchical level (formed by the

previous hierarchical level outlier pixels), until all pixels

are classi�ed.

At the end, this motion segmentation step provides a

partition L of the image into NL macro-regions, where

NL =
P

R2R LR and LR is the hierarchical level num-

ber of each object R 2 R, as such hierarchical number

represents the number of regions that when combined

form object R. The top-down approach often provides

an under-segmented image, due to the dominant motion

assumption. This draft segmentation L is the initial

guess for the bottom-up step.

3.2 Bottom-Up Motion Field Segmentation

A motion vector k-means clustering algorithm based on

an MRF model [8] is used in this step.

For every macro-region L 2 L, pixels with similar mo-

tion vectors are clustered. Motion vectors whose associ-

ated regions have a size greater than a suitable threshold

T are then selected as cluster centres. In this way the

problem of choosing the cluster number KL, L 2 L, is
automatically solved. Moreover, for each macro-region,

only few clusters are considered. If only one cluster is

selected, no region splitting is needed; the macro re-

gion corresponds to a coherently moving object and the

associated motion parameter is reliable. If more than

one cluster is identi�ed, a modi�ed k-means clustering

method is carried out on the macro-region motion vec-

tors. An MRF model is exploited to include spatial con-

nectivity among elements in the same class. The region

labelling is obtained by minimizing the following energy

function:

min
k=1;:::;KL;x2L

U1(x) = E�k(x) +
X

y2�1(x)

V1(x;y) (2)

V1(x;y) =

�
��1 if lx = ly
+�1 if lx 6= ly

(3)

where �1(x) is the �rst-order neighbourhood (i.e., 4-

connected set of points) of pixel x and lx; ly are labels

at pixels x and y. The �rst term of Eq. 2 measures the

�tting of the motion parameter vector �k of region k to



the observed motion vector d(x), while the second one

accounts for the region spatial connectivity. The Iter-

ated Conditional Modes (ICM) algorithm provides the

maximum a posteriori (MAP) estimation of the motion

segmentation [9].

At the image level, i.e., for all formed regions, a clus-

tering in the parameter space [3] is then carried out in

order to merge coherently moving regions which were

possibly separated after the two motion segmentation

steps as they were assigned to di�erent hierarchical lev-

els. Small residual regions are �nally merged into the

most coherently moving surrounding object, i.e., to the

region which provides the minimum sum of residual er-

rors (Eq. 1). This procedure provides a set M of NM

meaningful regions characterized by an accurate set of

a�ne motion parameters.

4 SPATIO-TEMPORAL SEGMENTATION

REFINEMENT

The �nal region boundaries identi�cation is achieved

through an MRF-based regularization approach [8], [10].

A weighted sum of displaced frame di�erence (which

accounts for motion) and intensity di�erence (which ac-

counts for luminance values of the region) [11], is pro-

posed as joint similarity measure between boundary pix-

els and regions. The motion of each region M is identi-

�ed by a set of a�ne parameters �M , which have been

estimated in the motion �eld segmentation steps. The

motion similarity between the pixel x under considera-

tion and the region M 2M is de�ned as

Sm;�M (x) = jIt(x)� It�1(x� dx;�M (x); y � dy;�M (x))j
2

where It(x) is the grey value at x at time t. The in-

tensity of each region M is identi�ed by a set of three

parameters �M = (�; �; 
), which are estimated by

means of a linear regression method on luminance val-

ues. Hence the intensity similarity is de�ned as

Si;�M (x) = jI(x) � I�M (x)j
2

where I�M (x) = � + �x + 
y is the grey value gen-

erated at pixel x by the luminance parametes �M of

region M . To account for local intensity variations in

the image, the luminace parameters are estimated over

samples that lie into a d � d window centered around

the current pixel x.

Thus, a new joint similarity measure can be de�ned as

the weigthed sum of motion similarity plus the intensity

similarity

SM (x) = �Sm;�M (x) + (1� �)Si;�M (x)

where � is a weight factor.

The adjustment is carried out locally at the boundary of

each region assigning the processed pixel to the region

M whose motion and luminance parameters provides

the best similarity value. The energy function to be

Figure 1: \Flower Garden": (top left) one frame; (top

right) Top-Down segmentation L (NL = 2 + stationary

background); (bottom left) Bottom-Up segmentationM
(NM = 3) with T = 200, �1 = 0:5; (bottom right)

Spatio-Temporal segmentation S with �2 = 128, d = 20,

� = 0:5.

minimized is

min
M2M0

U2(x) = SM (x) +
X

y2�2(x)

V2(x;y)

where M0 is the set of candidate labels, i.e., labels at

x and its second-order neighbourhood �2(x) (i.e., 8-

connected set of points), and V2(x;y) represents the

MRF potential function whose expression is given by

Eq. 3 with index 2 replacing index 1. The ICM algo-

rithm [9] is used to obtain the MAP estimate of the �nal

spatio-temporal segmentation S.

5 SIMULATION RESULTS

The proposed motion �eld segmentation technique has

been tested on the CIF sequences \Flower Garden"

(Fig.1), \Table Tennis" (Fig.2) and \Foreman" (Fig.3).

Fig. 1, top right, shows \Flower Garden" top-down im-

age partition L into NL = 2 macro-regions L (the tree

and the 
ower-bed/houses) and the stationary back-

ground (black). The 
ower-bed and the houses are

detected in the bottom-up stage (Fig.1, bottom left),

where the motion based partition M gives rise to

NM = 3 coherently moving regions M . Fig.1, bottom

right, shows the spatio-temporal segmentation where

the boundary \blockiness" e�ect has been removed by

the regularization step. \Table Tennis" sequence (Fig.2,

bottom right) is e�ectively segmented (NM = 3 objects,

i.e., the ball, the arm, the racket with the hand, and the

background) with precisely located motion boundaries.

Even if \Foreman" sequence (Fig.3, bottom right) re-

sults in an over-segmentation, the �nal object detection

is still meaningfull.



Figure 2: \Table Tennis": (top left) one frame; (top

right) Top-Down segmentation L (NL = 3 + stationary

background); (bottom left) Bottom-Up segmentationM
(NM = 3) with T = 200, �1 = 0:5; (bottom right)

Spatio-Temporal segmentation S with �2 = 64, d = 20,

� = 0:5.

6 CONCLUSIONS

The segmentation of video sequences into coherent mov-

ing objects has been addressed in this paper. The ad-

vantages of the top-down and bottom-up motion �eld

segmentation algorithms have been exploited to propose

a new cooperative method. Furthermore, an intensity-

and-motion based regularization step has been sug-

gested to get an accurate spatio-temporal segmentation.

Simulation results show that moving objects are e�ec-

tively detected and their boundaries are accurately lo-

cated.

Future developments will be devoted to implement a

more robust cluster number selection and to introduce

a tracking algorithm to maintain segmentation temporal

stability.
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