GENERATION OF IDEMPOTENT MONOTONE
BOOLEAN FUNCTIONS

Ilya Shmulevich
University of Nijmegen
The Netherlands

e-mail:

ABSTRACT

This paper focuses on the class of idempotent monotone
Boolean functions. Monotone Boolean functions corre-
spond to an important class of non-linear digital filters
called Stack Filters. The idempotence property implies
that applying such a filter produces a root signal in
one pass. We present an algorithm for testing a given
monotone Boolean function for idempotence and pro-
vide the set of idempotent monotone Boolean functions
of 5 variables.

1 INTRODUCTION

Monotone Boolean functions have been extensively
studied in the area of non-linear digital filtering, specif-
ically stack and morphological filtering. In fact, any
Stack Filter of window-width n is uniquely specified
by a monotone Boolean function of n variables. Sim-
ilarly, the Stacking Property obeyed by all stack filters
is the monotonicity of these Boolean functions [1],[2]. In
this paper, we focus on idempotent monotone Boolean
functions and discuss a procedure for testing a given
monotone Boolean function for idempotence.

1.1 Monotone Boolean Functions and the Free
Distributive Lattice
Let & = (o, -+,) and 8= (B1,- -+, Brn) be n-element
binary vectors (primes). We say that & precedes 8, de-
noted & X B, if a; < B; for 1 < i < n. Let E" rep-
resent the n-cube. The k" level (0 < k < n) contains
only those primes with exactly & components equal to
1. The set of all primes on the k** level will be denoted

by E™*. A Boolean function is one which maps E™ into
E'.

Definition 1 A Boolean function f : E* — E' is called
monotone (also called positive) if for any two primes

& and 8 such that & < (3, we have f(a) < f(B).

The set of all monotone Boolean functions of n vari-
ables consists of all closed from below subsets of E™, the
Boolean algebra on n elements. It is also ordered by the
same relation as E™ and is called the Free Distributive
Lattice on n generators, denoted by FDL(n).

shmulevich@nici.kun.nl

It is well known that a monotone Boolean function is
uniquely defined by its set of minimal primes, where a

prime & € E™ is minimal if f (&) =1 and f ([;) =0
for all 3 € E™ such that 3 < & [3]. Again, this is
a consequence of the fact that the Boolean function is
monotone.

Definition 2 Let & € E™F be an arbitrary prime.
U E™°such that

B s=k+1

a < B, will be called the shadow of &, and denoted

by T(&).

Then the set of all primes B S

If f(&) = 1, then we say that f selects & and | f| is the
number of such primes for some function f € FDL(n).
That is, |f| = [{&@ € E™: f(&) =1}|. Since E™ has ex-
actly 2" elements, 0 < |f| < 2™ and |f| represents the
level of FDL(n) on which f is located. Clearly, FDL(n)
splits into 2™ + 1 levels.

1.2 Idempotent Monotone Boolean Functions

Let us consider a special class of monotone Boolean
functions. Before proceeding, however, it is necessary
to state the following definition.

Definition 3 A Boolean function f(x1,---, &+, &y)
depends essentially on the variable x; if there exist two
primes & and & which differ only in the it® coordinate,

such that f(&) # f(&).

The variable x; will be called an essential variable.
Let the number of essential variables for a particular
function f be called the order of f. If the order of f is
equal to n, then the function will be called a full-order
function.

To this end, let f : E” — E! be a monotone Boolean

function. Let us define n functions fi,---, fn : E?* 1 —
E! as follows:
Jre(xr, - @won_1) = f(@rs s Thgn—1) V Tk, - -, Thogm—1

(1)
The above functions will be called the expanded func-
tions, since their domains have been expanded to E?7»~1.

Please note that fictitious variables have been pur-
posefully introduced into these definitions so that all
fi, i =1,---,n can be elements of the same set, namely,
FDL(2n — 1) even though the order of each f; is not
more than n. Also note that there was no assumption
being made regarding the order of f itself, which may
very well be less than n. For the ensuing discussion, let
us restrict our attention to full-order functions. Finally,
let us assume that from now on n is an odd number,
since the definition of idempotence becomes ambiguous
for even n. Now, we are ready to give the definition of
an idempotent monotone Boolean function.

Definition 4 If

[(fi(ze, .. 2om—1), fo(@1,. .., Zap—1),- -
"',f'n(xly---nyn—l)) ==

f (Z'nily...,xSnfl forall xuir, ..., a0
2 2 2 2

then f € FDL(n) is an idempotent monotone
Boolean function.

As can be seen from the above definition, we are con-
sidering a composition of functions. Since functions f,
f1, fa,- -+, fn are all monotone functions, it can easily be
shown that the composition of these functions as shown
in Definition 4 is also a monotone function.

2 REPRESENTATION OF MONOTONE
BOOLEAN FUNCTIONS

Before we can check a given monotone Boolean func-
tion for idempotence, we must have an efficient method
for storing such a function in a computer. The most
economical and computationally convenient way to rep-
resent a function f is to simply store the vector 7 as
a binary string of length 2", where n is the number of
variables. So, for example the function f (z1, 29, z3) =
9 + x123 would be represented by

7 = 11101100 (2)

The bits are arranged in the usual binary coded decimal
(BCD) representation starting from right to left. The
bits which are underlined are the minimal primes of the
function. The rest of the 1° represent the shadow. It
should be noted that to perform a conjunction or dis-
junction of two functions f and g, we simply perform the
logical bitwise AND or OR operation respectively on 7y
and 7,. This is one reason why the above representation
is computationally convenient.

3 TESTING FOR IDEMPOTENCE

In order for us to test a given function f for idem-
potence, we must first form the n expanded functions
fi,--+, fn defined in (1). Since fi,---, f, are all func-
tions of 2n — 1 variables, we will need binary vectors
of lengths 227~ to represent them. Furthermore, since

each f; is defined in terms of f, we can construct the
vectors Ty, 7 = 1,---,m in terms of 7¢. To see how to
do this, we simply need to consider the truth table that
defines each f;. Each f; has only at most n essential
variables and thus has n — 1 fictitious variables. So, if
Tpy -y Thin—1 are the essential variables (for function
f1), then for any particular values of xy, - - -, T 1pn—1, the
value of f;, will be repeated 2”1 times in the vector Th,-
This is due to the fact that for each g, - - -, Tr4n—1, the
n — 1 fictitious variables combine to make 27! possible
values.

To construct 7y, , each bit of 7y will be repeated 27~!
times in a row. This is because for f;, the essential vari-
ables are the leftmost ones (most significant bits) and
the fictitious ones are the rightmost ones (least signifi-
cant bits). For 7y,, each bit of 7; will be repeated 272
times in a row. However, since the truth table is ba-
sically split up into two parts: one when the fictitious
variable 1 = 0 and one when z; = 1, 7, has two iden-
tical parts. In general, to construct 7y, , each bit of 7
repeats 2"~ ¥ times and when we run out of bits in Ty, we
start again, repeating this process 2¥~! times. As one
can see, 27~%.28=1 = 2n=1 which is the total number
of times each bit repeats. The following example illus-
trates this construction for the vector defined in (2).

Example 1 Let 7y = 11101100. Then,

Ty, = 11111111111100001111111100000000
Ty, = 11111100111100001111110011110000
Ts, = 11101100111011001110110011101100

Notice that in Ty, every bit of T¢ is repeated four times
in a row. In Ty, every bit is repeated two times in a
row, but this is done twice. In Ty, every bit is repeated
one time, but this is done four times altogether. The
minimal primes for each f; are also underlined.

Now, we are ready to check whether or not Defini-
tion 4 holds. To do this, we simply form 7, where f
is defined as f = f (f1,--+, fn)- Since f is a function of
2n — 1 variables, the length of 7 7 will be equal to that of
the vectors 7,. Thus, for every & € E?"~!, we simply
evaluate f; through f, at & and then evaluate f , treat-
ing the values of fy,---, f, (for that particular &) as a
prime in E™. Let b(&) be the integer represented by a.
Recall that the bits of Ty, were arranged in BCD rep-
resentation and so to evaluate f at some particular &,
we simply look at the components of 7y ,---, 77, at po-
sition b (&) (from right to left). These components form
some prime 3 € E™ and the value of f at & is simply
the component of 7, in position b (5) The following

outlines this algorithm:

form vectors 7, ,- -, 7y,
fori =0 to 22n~1 —1

form the vector 3 = (Tp, (@), -, Ty, (1))

107 0()

next ¢

Let us consider the example above. We would like to
find out the value of f at the prime & = (00101). Since
b(&) = 5, we look at the 5" position of the three vectors
Tr s Tfs, Tfs- They have values 0,1,1 at that particular
&. So, let § = (011). To find the value of f, we look at

position b (B) = 3 of 7¢. The value is equal to 1. Of

course, using the above procedure for every & € E?"~1,
we can generate the whole vector 7 Iz For this example,
the vector 7 f is identical to 7y, (easily checked by hand).
This implies that the equation in Definition 4 is satisfied
and that the function f is idempotent. In general, after
forming the vectors 7y, ,-- -, Ty, , checking a function for
idempotence simply consists of referencing the original
vector 77, 2n — 1 times, and comparing 7 jtoTy nit
4 ENHANCEMENTS TO THE IDEMPO-
TENCE CHECKING ALGORITHM

There are several ways to increase the efficiency of the
algorithm for checking a monotone Boolean function for
idempotence. One improvement can be made by con-
sidering the functions defined in (1). These functions
are essentially dependent on no more than n variables.
Therefore, we can immediately conclude that for a func-
tion to be idempotent, f must also be essentially depen-
dent on the same variables as fni1. In the previous
section, we pointed out that the ﬁcfcitious variables lead
to repetitions of the bits in the vectors 7;,. Moreover,
the vector 7y, contains 2k=1 jdentical parts. Thus, the
vector 7 ; must contain 2“3~ identical parts, since it
must equal 7¢, ,. This fact allows us to immediately

discard functions upon discovering that 7 7 does not con-

tain 2“3~ identical parts. For example, in the n = 3
case, 7§ must have 2 identical parts in order to be idem-
potent. So, we simply compare the 0! bit to the 16",
then the 1¢ bit to the 17* and so on.

Another useful improvement is obtained by using du-
ality as well as reverse permutation. Once finding an
idempotent monotone Boolean function, we get two
other ones “for free,” since we know that the dual and
the reverse permuted functions must be idempotent as
well [4]. Table 1 contains all idempotent monotone
Boolean functions of order 5, generated by the above
algorithm.

In conclusion, without any knowledge of the structure
of idempotent functions in general, the only method for
generating them is by first making the entire free dis-
tributive lattice available (FDL). Because of the extreme
growth rate of FDL(n) as a function of n, it is only
possible to generate it (not enumerate) for n < 7 [5].
Therefore, further research should be conducted with

T3TyTs + T1T2T3 + T2T3T4

T3x5 + T1T3 + ToT3T4

T3Tq + T1T2X4T5 + ToX3

T3Tsy + T1T2T4T5 + r1x3 + ToX3T4
T3Ts + 123 + X223 + T324

T3Ty + T1T2T5 + T12T4T5 + TaTs

T3T5 + T1ToXT4T5 + T1T3 + Ty + T3Ty
T3 + T1T274T5

T3Ts + 123 + ToTyq

T3Ts + T1X2X5 + 123 + T1T4T5 + Tax3 + T324
T3 + T1TT5 + T1T4T5

T3Ts + T1T3 + T2T3 + TaTy + T324
T3+ T1T4 + Taxg + X255

Table 1: Idempotent Monotone Boolean Functions of
Order 5

the aim of discovering general structural properties of
idempotent monotone Boolean functions.

References

[1] P.D. Wendt, E.J. Coyle, N.C. Gallagher Jr., “Stack
Filters,” IEEE Transactions on Acoustics, Speech,
and Signal Processing, vol. ASSP-34, no. 4, pp. 898-
911, Aug. 1986

[2] E.J. Coyle, J.H. Lin, “Stack filters and the mean
absolute error criterion,” IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. ASSP-
36, no. 8, pp.1244-1254, Aug. 1988

[3] A.D. Korshunov, “On The Number of Monotone
Boolean Functions,” Problemy Kibernetiki, 38, pp-.
5-108, 1981 (Russian)

[4] I. Shmulevich, E.J. Coyle, “On the Structure of
Idempotent Monotone Boolean Functions,” Proceed-
ings of Noblesse Workshop on Non-Linear Model

Based Image Analysis, July 1998, Glasgow, Scot-
land.

[5] I. Shmulevich, T.M. Sellke, M. Gabbouj, E.J. Coyle,
“Stack Filters and Free Distributive Lattices,” Pro-
ceedings of 1995 IEEE Workshop on Nonlinear Sig-
nal Processing, Halkidiki, Greece, 1995.

