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ABSTRACT

This paper presents a method for the classi�cation of
nonlinear systems through the study of the free oscil-
lations in the time-frequency plane, when the measured
data are a�ected by noise. Nonconservative SDOF (Sin-
gle Degree Of Freedom) oscillators described by a non-
linear second order di�erential equation are considered.
The nonlinearity is due to a nonlinear function of the
state variable, which produces free oscillations with a
time-variant spectrum. The method used for the classi-
�cation is a substantial modi�cation of a basic algorithm
proposed by the same authors for noise-free data. In
presence of noise improved performances are obtained
with the new algorithm.

1 INTRODUCTION

This paper deals with the problem of classifying nonlin-
ear systems described by a nonlinear di�erential equa-
tion

�u(t) + c _u(t) + f(u(t)) = 0 (1)

where c is a small positive parameter, called damping

factor, and f(u) is a function of the state variable u

identifying the type of nonlinearity. The class of systems
described by (1) is called SDOF (Single Degree Of Free-
dom), because a single one-dimensional state variable
is present in the di�erential equation, and nonconserva-

tive, because of the positive damping c, which causes the
signal u(t) to decay. A classical SDOF nonconservative
system is the nonlinear oscillator.
Equation (1) is used as a fundamental model in many

areas of science, and the study of its properties consti-
tutes a subject of undoubted interest. In particular in
identi�cation problems (for example in structural diag-
nostic), the interest is often in the classi�cation of the
type of nonlinearity. In literature this problem is studied
with methods based on the analytic signal [3], inverse
Volterra-Wiener series [8], Higher Order Spectra (HOS)
[7]. In [4] a completely new approach has been proposed,
based on the identi�cation of the nonlinear function f(u)
(from now on, called the nonlinearity) through the signal
u(t) represented in the Time-Frequency plane. In this
plane, as explained in Sect. 2.1, the nature of the free

oscillations generated by the system, set up with initial
conditions not too far from equilibrium (weak nonlin-
earity), can be easily observed. In fact, as it is well
known from the theory of the nonlinear oscillations [6],
the signal u(t) produced in this situation is generally
composed of a time-variant fundamental frequency plus
a set of time-variant higher harmonics. The time evolu-
tion and the energy of both fundamental and harmonics
depend on the type of nonlinearity.

The method proposed in [4] is very e�cient when data
are noise-free. In this paper a modi�ed algorithm is pro-
posed, able to overcome the performance degradation
due to the presence of noise in the measured data.

Simulation results prove the validity of the method.

2 NONLINEAR OSCILLATORS

The nonlinearity in (1) is due to the function f(u). Only
when f(u) = ku the system becomes linear, and (1) be-
comes the representative equation of the well known har-
monic oscillator. In this case an exponentially damped
sinusoid, with frequency f0, is produced by the system,
when set up with some initial values u(0), _u(0). The
generated signal is often referred to as free oscillation
or oscillation, with frequency f0 independent from the
amplitude of the oscillation.

In a nonlinear oscillator the frequency of the oscilla-
tion depends on the signal amplitude, and therefore it
can vary according to the amplitude variations. More-
over the signal u(t) looses its exact sinusoidal behavior,
and it will be composed by a fundamental frequency
plus a set of higher harmonics.

The nonlinearities considered in this paper are indi-
cated in Table 1. They are particularly interesting in
structural diagnostic, where they describe the typical
nonlinear behavior of beams under dynamic loading.

2.1 Time-Frequency Representation of the Free

Oscillations

The Time-Frequency Distributions (TFD) are a power-
ful tool for the representation and the analysis of signals
with time-varying spectra, [2]. Each TFD is de�ned as
a two-dimensional transformation (from the Time do-
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main to the Time-Frequency domain); a TFD, applied to
a generic signal x(t), produces a two-dimensional func-
tion Dx(t; f), de�ned in a plane, known as TF (Time-
Frequency) plane.

The time variation of both the fundamental and the
higher harmonics of the free oscillations are well repre-
sented in the TF plane. For what concerns the method
proposed in this paper, the key point of this signal rep-
resentation is the fact that all the useful information for
the algorithm can be extracted from the TF plane.

2.2 Instantaneous Frequency

A crucial point of the analysis based on TFDs is the pos-
sibility of associating an instantaneous frequency fi(t) to
a generic signal x(t), de�ned as the average frequency of
x(t) at a particular time. It is well known [2], that the
instantaneous frequency obtained with the Wigner Dis-
tribution (WD) exhibits a \physical" meaning in terms

of harmonic decomposition of a signal x(t). For this
reason the Wigner distribution will be used for char-
acterising the time variation of the fundamental in our
application.

3 DESCRIPTION OF THE CLASSIFICA-

TION METHOD

The classi�cation method proposed in this paper is
based (as the basic algorithm in [4]) on the assumption
that the time variation of the fundamental, denoted as
f0(t), may be a discriminating element among di�erent
nonlinearities. The method is performed in three steps.

Estimation in the TF Plane. An estimate f̂0(t) of
the fundamental frequency, based on the instan-
taneous frequency introduced in Sect. 2.2, is �rst
accomplished. In particular the extraction of the
fundamental is performed by using a variant of a
method called WD (Wigner Distribution) peak de-

tection algorithm [1]. The variant has been designed
to take into account the presence of noise.

First a masking process in the TF plane is per-
formed, to cut o� the noisy data around the funda-
mental frequency. The mask is designed to well �t
the time-varying behavior of the fundamental. Sec-
ond the maximum of the masked Wigner is evalu-
ated for each time t, leading to the estimate f̂0(t).

Analytical Approximation. The second step of the
method consists in producing an alternative expres-
sion ~f0(t) of the fundamental related to the system
parameters. Two approximations are necessary to
obtain this expression.

� Conservative Approximation. The nonconser-
vative system described by (1), in the case of
a weak nonlinearity, can be considered as lo-
cally conservative (c = 0), and then described
by the equation

�u(t) + f(u(t)) = 0 (2)

valid in a short time interval. The oscillation
u(t) will be periodic, but not sinusoidal [6].
Therefore it will be composed by a fundamen-
tal frequency and a number of harmonics. Be-
cause of the nonlinearity the fundamental fre-
quency will be a function of its amplitude a.

An analytical approximation ~f0;A of the fun-
damental can be obtained from (2) through
the use of techniques, known in nonlinear anal-
ysis, as Perturbation Methods [5]. The approx-
imations for the nonlinearities of Table 1 can
be found in [4].

In general ~f0;A depends on the parameters
p1; p2; :::; pn of the nonlinear function f(u),
and on the oscillation amplitude a. Therefore
it can be written as ~f0;A(a; p1; p2; :::; pn).



It is important to emphasize the fact that this
expression is valid only locally. In the actual
systems c 6= 0, so causing the fundamental am-
plitude to decay. The idea proposed in [4] is to
assume the approximation ~f0;A(a; p1; : : : ; pn)
valid also in the case c 6= 0, by substituting
the constant a with a time function a(t) rep-
resenting the time variation of the fundamen-
tal amplitude. Therefore ~f0;A(a; p1; p2; :::; pn)

will be written as ~f0;A(a(t); p1; p2; :::; pn). The
simulation results shown in [4] validate this as-
sumption for measured noise-free data.

� Low-Energy Harmonics Approximation. The
fundamental amplitude a(t) is estimated as
the total oscillation amplitude. Its value, de-
noted as â(t), is evaluated with sophisticated
techniques of signal synthesis in the TF plane.
This part is innovative with respect to the ba-
sic algorithm in [4], and represents the key
point of the method when data are a�ected
by noise. The idea is to construct a synthetic
signal s(t), whose instantaneous frequency is

forced to be f̂0(t), and with exponential de-
caying amplitude

s(t) = a(t)cos'̂0(t) = �e��tcos'̂0(t) (3)

where

'̂0(t) =

Z t

0

2�f̂0(t
0)dt0 (4)

Then a minimization problem in the least
square sense is set up, between the Wigner
distribution of the noisy signal and s(t)

min
�;�

kW [s]�W [u]k
2
2 (5)

The parameters �̂; �̂ of the minimum point de-
termine the estimated fundamental amplitude

â(t) = �̂e��̂(t) (6)

Combining these two approximations, the ex-
pression of the fundamental is �nally reached:

~f0(t) = ~f0(t; p1; p2; :::; pn)

= ~f0;A(â(t); p1; p2; :::; pn)

Minimization Step. The third step of the method
is based on a matching algorithm between
~f0(t; p1; p2; : : : ; pn) and f̂0(t). The hypothesis is
made that the nonlinearity responsible of a given
measured signal u(t) should be able to best �t its

fundamental f̂0(t). For each nonlinearity the min-

imum Mi of k ~f0(t; p1; p2; : : : ; pn) � f̂0(t)k is evalu-
ated for each nonlinearity. In our example i 2 [1; 5]
is an index for the �ve nonlinearities of Table 1.

Figure 1: Results of the classi�cation process. Circles
("O"): Minimum distances reached by approximation
type C; Stars ("*"): Type B; Pluses ("+"): Type A, D,
E. The continuous line links the mean value of the type
C distances for every SNR.

Nonlinearities are then classi�ed with respect to the
distance Mi reached in this data �tting problem.
The identi�ed nonlinearity is the one that reaches
the minimum Mi.

Notice that this method is also able to assign a set of
estimated parameters (p̂1; p̂2; � � � ; p̂n) toMi. There-
fore both classi�cation and parameters estimation
are attained with the proposed algorithm.

4 VALIDATION OF THE METHOD

The method has been validated by simulation for the
�ve nonlinearities in Table 1. Five test signals uI(t)
(I=A, B, C, D, E) were created by simulation, each
one representing the free oscillation generated by a non
linear system of type I . The results of the �ve tests,
shown in [4], validate the method in the ideal case of
noise-free data.
In case of noisy data similar results have been ob-

tained. A signal u(t) has been generated with the non-
linearity type C of Table 1. Then a gaussian noise has
been added to this signal, with SNR values of 20, 10,
5, 0 dB. Ten noisy signals have been generated for each
SNR value.
The method has been applied to this set of signals,

and the results are shown in Fig. 1. The circles ("O")
represent the minimum reached by the approximation
function type C, the stars ("*") indicate the minimum
reached for type B, while the pluses ("+") refer to the
other three nonlinearities. It is possible to see that all
the circles are located in the bottom of the diagram
(there is only one quite ambiguous value for 0 dB), and



this means that the approximation function type C al-
ways reaches the minimum distance with respect to the
others. The identi�ed nonlinearity is hence always type
C, the correct one, proving the validity of the method.

5 CONCLUSION

In this paper an original method for the classi�cation
of nonlinear systems has been presented, based on the
time-frequency analysis of the free oscillations. The
method is robust, as it works also in presence of high-
level noise.
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