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ABSTRACT

In this paper nonlinear �ltering and identi�cation based

on �nite support Volterra models is considered. A set

of primary signals, de�ned in terms of the input signal,

serve for the e�cient mapping of the nonlinear process

to an equivalent multichannel format. An e�cient or-

der recursive method is presented for the determination

of the Volterra model structure. The e�ciency of the

proposed methods is illustrated by simulations.

1 INTRODUCTION

Volterra series modeling is a popular approach to cope

with nonlinear time-invariant systems. Volterra mod-

els are parametrized with respect to the degree of the

nonlinearities and the corresponding memory. Finite

support Volterra models are very attractive, since they

are generic enough and also reduce to linear regressions.

Thus, optimum parameter estimation methods result to

the solution of linear systems of equations, both for the

Mean Squared Error (MSE) case, as well as for the Least

Squares Error (LSE) case. Most methods address this

problem by recasting the Volterra �ltering and identi-

�cation model to an equivalent linear multichannel set

up. The parameters sought are subsequently obtained

by applying linear multichannel parameter estimation

algorithms, in batch as well as in adaptive form.

A discrete time �nite support regular Volterra model

has the form, [1]

y(n) = c0 +

kX
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In the above de�nition, k is the maximumdegree of non-

linearities, while each index m`, 1 � ` � k, represents

the 'memory' of the corresponding nonlinearity. More-

over, h`(i1; i2; : : : i`) is the Volterra kernel of degree `.

x(n) is the input and �(n) is the unmeasured distur-

bance.Notice that the triangular and the regular kernels

are permutation equivalent, [1, p.246].

The number of coe�cients involved into the regular

kernel representation is given in terms of the memory

associated with each degree of the nonlinearity as M =

1 +
Pk

`=1

�
m`+`�1

`

�
. For the special case of equal mem-

ories for all kernels, we get M = 1 +
Pk

`=1

�
m+`�1

`

�
=�

m+k

k

�
.

2 THE MULTICHANNEL EMBEDDING

From the regular formulation of the Volterra model, (1),

it follows that the data products involved in the estima-

tion of the �lter output possess a shift invariance prop-

erty. This is also true for the triangular model, subject

to a permutation shu�ing. Indeed, the data related to

the linear part are time shifts of the input signal x(n).

The data involved in the second order part are time

shifts of the signals x(n)x(n � i1), 0 � i1 � m2 � 1,

and so on. It is reasonable to de�ne a set of primary

signals that carry on all the information needed for the

estimation of the convolution eq. (1). All other data

are produced as time shifts of the primary signals. The

primary signals are de�ned in Table 1. The primary

signals are embedded into a multichannel signal ���K(n)

���K(n) = [�1(n) �2(n) �3(n) : : : �K(n)] =

[1 x(n) x2(n) x(n)x(n� 1) : : :
Qk�1

j=1 x(n�
Pj

q=1 iq)]
T

A multichannel formalism can be introduced for the

description of the regular Volterra kernel. The linear

term convolves the input signal x(n) with the linear

kernel coe�cients. The second order term can also be

written in a linear regression form, this time however a

multichannel formulation is required. It can be written

as a linear regression of a multichannel �lter with m2

input signals, namely the primary signals correspond-

ing to the second order term, and �lter size m2 for the

�rst channel up to 1 for the last one. Working in a

similar way, the third order term is written as a linear

regression of a multichannel �lter with (m3)(m3 + 1)=2

input signals, and �lters size varying from m3 to 1. In

general, the k order kernel of a Volterra �lter is written

as a multichannel linear regression with
�
mk+k�2

k�1

�
input

signals and �lters size varying from mk to 1.



In this manner, eq. (1) is viewed as a multi-input

single-output �lter. The number of the primary sig-

nals entered the multichannel regression is K = 2 +Pk

`=2

�
m`+`�2

`�1

�
. Each �lter has size varying form m1,

m2 : : :mk to 1. Ifmi = mj = m, then K = 1+
�
m+k�1
k�1

�
.

The linear regression (1) is then described in terms

of a multichannel regressor, y(n) = ���T
M (n)CCCM + �(n).

���M (n) is the multichannel regressor and CCCM is the cor-

responding �lter coe�cients vector. Subscript M is uti-

lized to denote that both vectors have dimensionsM�1.

���M (n) and CCCM are both block vectors that consist of K

sub-vectors, of dimensions varying form m1, m2 : : :mk

to 1. The size of each �lter can be retrieved from a

multi index that carries all the �lters' size for each pri-

mary signal associated to the Volterra kernels. To this

end, let us de�ne the multi index

P = [ 1|{z}
0th�kernel

p1|{z}
1th�kernel

p20 : : : p
2
m2�1| {z }

2nd kernel

: : :

pk0:::0 : : : p
`
mk�1;m2�1;:::mk�1| {z }
kth kernel

]
(2)

Clearly, P has K elements, equal to the number of

the primary signals, and each element denotes the �l-

ter size corresponding to a primary signal. Moreover,

1 � p`i1;i2:::i` � m`, and M , the number of the �l-

ter coe�cients given is now alternatively estimated as

M =
PK

i=1 P (i). Thus, the regressor vector is written

in a block vector form, as

���M (n) = [ 1 ���T
P (2)(n) ���

T
P (3)(n) � � � ���

T
P (K)(n) ]

T
(3)

where each ubvector ���P (i)(n) carries the data associated

with a primary signal, i.e.,

���P (i)(n) = [�i(n) �i(n� 1) : : : �i(n � P (i) + 1) ]T

and P (i) is the corresponding �lter size as is assigned in

the multi-index P .

The Volterra regression that minimizes the total

squared error EM (N ) =
PN

n=0(y(n) � ���T
M (n)CCCM (n))2,

is seeked. The resulting normal equations have the form

RRRM(N )CCCM (N ) = DDDM (N ) (4)

where

RRRM (N ) =

NX
n=0

���M(n)���T
M (n); DDDM (n) =

NX
n=0

���M (n)y(n)

(5)

Eq. (4) corresponds to a block near to Toeplitz lin-

ear system,[5]. Following [5], e�cient recursions for es-

timating the optimum �lter CCCM+1(N ) from the lower

order counterpart CCCM (N ) have been developed in [9].

The resulting algorithm is tabulated on Table 2. The

computational cost for the order updating procedure is

O(KM ). In a similar way, an order downdating can

be derived, [9], see Table 3. The order updating and

the order downdating algorithms of Tables 2 and 3, are

utilzed in the sequel to form an e�cient order searching

scheme.

3 VERSATILE ORDER RECURSIVE ALGO-

RITHMS

The problem of identi�ng the structure of a linear or

a nonlinear system, parametrized by linear or nonlinear

polynomialmodels, has long been studied in the context

of the identi�cation for prediction and control, [6]-[8]. In

our case, this is casted as follows: given the maximum

degree of the nonlinearities k, as well as the maximum

memory size associated to each kernel, m`, 0 � ` � k,

�nd the subset of coe�cients that speci�es the struc-

ture of the system, in some optimumway. Consider the

regular model of eq. (1). The maximum number of pa-

rameters addressed by this model is M . The optimum

�lter is then estimated by the LS solution, eq. (4), and

the minimum LSE error attained is given by

EM(N ) =

NX
n=0

y2(n)� DDDT
M (N )CCCM (N ) (6)

In order to �nd the best Volterra structure, all models

corresponding to all possible combinations of the index

space should be tested. Exhaustive search requires some

2M�1 trials. The cost of such task is heavy and grows

up exponentially even for the linear part of the model.

Suboptimal algorithms that pick up a single coe�cient

at a time have been proposed.

To overcome the engagement with a huge amount of

candidate models, the following assumption is imposed:

The model set consists of hierarchical models, with re-

spect to the evolution of the memory associated with

each channel. We are going to describe a rather simple

approach, yet e�ective for a certain class of problems

where the index space is restricted to evolve (grow up)

in a smooth way, i.e., index gaps are not allowed within

each kernel. Then, the Volterra structure is described

by the multi-index P de�ned by eq. (2).

Suppose that the optimum �lter CCCM (N ) has been es-

timated. It corresponds to the multi-index P and has

dimensionsM �1. The proposed order updating proce-

dure results to a new �lter with M + 1 coe�cients and

may come in one of the following three forms: a) in-

crease the memory corresponding to a primary signal of

a certain nonlinearity, b) introduce a new primary sig-

nal associated with a nonlinear kernel, and c) introduce

a new nonlinearity.

Similarly, we may apply an order downdating scheme

to delete of a �lter coe�cient, i.e., decrease the num-

ber of the �lter taps from M to M � 1. This can be

done by one of the following three ways: a) decrease

the memory corresponding to a primary signal of a cer-

tain nonlinearity, b) remove a single coe�cient primary

signal associated with a nonlinear kernel, and c) remove

a single coe�cient nonlinearity.

With the above order updating schemes at our dis-

posal, a (suboptimal) order searching algorithm can be

applied as follows 1) Given CCCM (N ) of size M � 1, es-

timate CCCM+1(N ) of size (M + 1) � 1, by increasing the



number of coe�cients by one, following each one of the

three ways discussed. Select the one that leads to the

minimum LSE error. The search is conducted over K

candidate �lters. 2) Among all �lters of size (M+1)�1

that can be produced from CCCM+1(N ) by a simultaneous

increase of one channel size by a adding a single coe�-

cient, while reducing another channel size by deleting a

single coe�cient (thus the size of the �lter remains the

same), select the one that leads to the minimum LSE

error. The search is conducted over K(K � 1) candi-

date �lters. 3) Iterate on step 2I times, I being a user

speci�ed integer. 4) Iterate on step 1 until a prede�ned

minimum LSE error is attained, or the �lter reaches at

a maximum size.

Order estimation indices can be utilized for the loca-

tion of the best model, that combines a minimum�tting

error, with the lowest number of parameters. The AICw

and the BIC are two popular criteria that can directly

be applied based on the minimum squared error EM (N )

and the number of processed data N , [6]-[8]. They have

the form

AICw(M ) = N ln(EM(N )=(N �M )) + wM; w > 0

BIC(M ) = N ln(EM(N )=(N �M )) +M ln(N )

4 SIMULATIONS

The performance of the search engine described in Sec-

tion 7, using the versatile order recursive algorithm, was

tested for a second order Volterra �lter, with k = 2, and

memory sizes m1 = 5 and m2 = 5. Thus, the number

of channels is K = 7, and the number of coe�cients

is M = 21. The structure of this Volterra system, is

described by the multi-index

P = [ 1|{z}
0th�kernel

p1|{z}
1st�kernel

p20 p
2
2 p

2
3 p

2
4 p

2
4| {z }

2nd�kernel

]

[ 1|{z}
0th�kernel

5|{z}
1st�kernel

5 4 3 2 1| {z }
2nd�kernel

]

The algorithmwas allowed to search for the best �lter, of

maximumsizeM = 30, withK = 10 allowable channels,

one for the constant, one for the linear part, and 8 for the

second order part. The corresponding primary signals

were �1, �2(n) = x(n), and �2+i+1(n) = x(n)x(n � i),

i = 0; 1 : : :7. A white noise input signal of size N = 512

was tested. The SNR was set to 20 db. The minimum

squared error attained, as well as the AIC2 and BIC

curves are shown in Figure 1 .The correct structure of

the system was predicted.

5 CONCLUSIONS

Nonlinear �ltering and identi�cation based on �nite sup-

port Volterra models has been considered in this paper.

A uni�ed framework for the multichannel embedding

of the Volterra system has been proposed. The regular

Volterra model has been utilized to facilitate the passage

from a single input single output �nite support Volterra

model to a multi input single output linear regression.

A set of primary signals that carries products of in-

put data has been introduced. These auxiliary signals

serve as inputs to the multichannel linear regression and

possess shift invariance properties. An order recursive

scheme capable of searching for the best model structure

has been derived, for the case when the Volterra model

structure is not known in advance. E�cient order in-

creasing or decreasing algorithms have been derived to

faciliate as fast computational engines during the search

for the best model �t. The e�ciency of the proposed

methods has been illustrated by simulations.
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PrimarySignal IndexRange

1

x(n)

x(n)x(n� i1) 0 � i1 � m2 � 1

x(n)x(n� i2)x(n� i1 � i2) 0 � i1 � m3 � 1;

0 � i2 : : :m3 � 1� i1
: : : : : : :Qk�1

j=1 x(n�
P`

q=j iiq ) 0 � i1 � mk � 1;

0 � i2 � mk � 1� i1;

: : :

0 � ik�1 � mk � 1�
Pj

q=1 iq

Table 1. The primary signals

�cM (i)(N ) = di(N ) +R
b(i)T

M (N )CCCM (N )

�
b(i)

M (N ) = rboi (N ) +R
b(i)T

M (N )BBBiM(N )

k
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M (N ) = ��
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Si CCCM+1(N ) =

�
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�
k
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M (N )

�
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M (N ) = �i(N � P (i)) + ���T
M(N )BBBiM (N )
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b(i)
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e
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END j

IF j = i THEN DO
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Table 2. The versatile order recursive algorithm. For-

ward recursions

�
b(i)

K�1(N ) = ~r
b(i)

K�2(N ) + ~RbT
M+1(N )BBBiM+1(N )

�
b(i)
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�
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�
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�
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f
M+1(N )�k
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:�k
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f
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e
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M (N ) = �i(N � P (i)) + ���T
M (N )BBBiM (N � 1)

�
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k
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�
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FOR j = 1; 2 : : :K AND j 6= i DO

SiBBB
j
M+1 =

�
�BBB
j

M+1(N )

k
b(j)

M (N )

�

BBB
j
M(N ) = �BBB

j
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b(j)

M (N )

END j

Table 3. E�cient decreasing recursions for the ver-

satile order recursive algorithm.
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Figure 1: The order search


