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Abstract

In this paper, new polyphase sequences and a se-

quence generation method are suggested. The cor-

relation properties of the sequences are investigated.

These sequences have good correlation properties.

Since the suggested generation method consists only

of integer sums and modular techniques, sequence

generation is also easy. The performance of the se-

quences is investigated for QS-CDMA systems in

frequency selective, time nonselective, slow Nak-

agami fading channel with additive white Gaussian

noise.

1 Introduction

For direct sequence code division multiple access

(DS/CDMA) systems, some sequences are sug-

gested: among the examples are the m�sequences
[1] or Gold's sequences [2]. These sequences, how-

ever, have some co-channel interference. For exam-

ple, the variance of inter-user interference is K�1
3N ,

where K is the number of users and N is the spread-

ing ratio [3]. The co-channel interference in a sys-

tem apparently lowers to some degree the perfor-

mance of the system. Some methods of interference

cancellation for such sequences are investigated for

several applications. However, since interferences

in the systems using such sequences are produced

from the correlation properties of the user code se-

quences, it is not possible to completely eliminate

the inter-user interferences in multiple access sys-

tems.

In [4], an orthogonal sequence is proposed. The

sequence, however, has some disadvantages. One is

that since the sequence is generated by the DFT

method, it is very complex to generate sequences.

Among the other disadvantages are that there ex-

ist some non-zero cross-correlations among the se-

quences and that the sequence is useful only for syn-

chronous channels.

In this paper, we suggest a semi-orthogonal se-

quence named PS sequence, which has several good

correlation properties. The auto correlation func-

tion of the sequence is 0 except at some periodic

intervals and that of the cross-correlation function

between properly selected sequences is 0. Thus, we

can completely reject the inter-user interference in a

system with the PS sequence. Since a restriction for

using the PS sequence in CDMA systems is that the

�rst chips of the information symbols of the users

are nearly synchronized, the PS sequence can be

used in such practical situations as the down-link of

DS/CDMA systems and both up-link and down-link

of quasi-synchronous CDMA (QS-CDMA) systems.

2 De�nition and generation of

the sequence

2.1 The new sequence

De�nition 1. Let us de�ne the N�N DFT matrix

as

FN;m =
�
W�klm

N

�
; (1)

where k; l = 0; 1; :::; N�1, WN = e2�j=N , j =
p�1,

and m = 1; 2; :::;N � 1.

De�nition 2. The diagonalized matrix D(fxlg) of
a sequence fxl , l = 0; 1; :::;Hg is de�ned as

D(fxlg) = diag(fxlg): (2)



De�nition 3. Let the quotient and residual func-

tions Q and R be de�ned as

Q(�; �) = q; R(�; �) = r; (3)

where � = q� + r, 0 � r < �, and q � 0.

Let us de�ne the basic complex symbols as a set

of Nb symbols �i; i = 0; 1; 2; :::; Nb � 1, all with

equal magnitude (not necessarily distinct): with-

out loss of generality, we assume �i's are located on

the unit circle of the complex plane. For example,�
W 0

3 = 1;W 1
3 ;W

2
3

	
is a set of basic complex sym-

bols.

We �rst generate an orthogonal sequence from

�i's. For a set f�ig of basic complex symbols and

1 � m � Nb � 1, the basic orthogonal sequence

matrix G of size Nb �Nb is de�ned as

G = F�1Nb;m
D(f�ig): (4)

Next, the basic orthogonal sequence fgpg of length

N2
b is de�ned by, for p = 0; :::; N2

b � 1,

gp = GQ(p;Nb);R(p;Nb)

= �R(p;Nb)W
Q(p;Nb)R(p;Nb)m
Nb

; (5)

where Gab means the ath row, bth column element

of G. Using the basic orthogonal sequence fgpg, we
make an Ns �K matrix H as

H = [hik] ; (6)

where

hik =

N2

b�1X
p=0

gp� (i� k � pK) ; (7)

Ns = KN2
b , and K is a natural number. The �rst

column of H starts with g0 followed by K � 1 0's,

then g1 followed byK�1 0's, :::, and gN2

b
�1 followed

byK�1 0's. Other columns ofH are shifted vectors

of the �rst column.

Then the PS sequence matrix C of size Ns�K is

de�ned as

C =
1

Nb

F�1Ns;1
H = [cl;k] ; (8)

where, as shown in [5],

cl;k = W lk
Ns

Nb�1X
p=0

�pW
lp

N2

b

� (R(l +mp;Nb)) :(9)

The sequence fcl;k; l = 0; 1; :::;Ns� 1g (a column

of C) will be called a PS sequence.

2.2 Simpler generation of the PS se-

quence

In the above subsection, we have introduced the PS

sequence. The generation, however, involves a num-

ber of matrix multiplications: in this subsection, a

method for simpler generation is introduced.

Without loss of generality, we can assume �p 2�
W i

V ; i = 0; 1; :::; V � 1
	
, where V is a positive in-

teger. Consider a function P de�ned by P (�p) = vp
when �p = W

vp
V . Then (9) becomes

cl;k =

Nb�1X
p=0

W lk
Ns
W

vp
V W

lp

N2

b

� (R(l +mp;Nb))

= W is
Vs
; (10)

where is = V l (k +Kps) + P (�ps)Ns, Vs = V Ns,

and ps satis�es R(l +mps; Nb) = 0.

Since the simpler method does not require DFT

calculations and matrix multiplications, the se-

quences can be generated quite easily.

3 Characteristics of the PS se-

quence

3.1 Autocorrelation

As shown in [5], the autocorrelation function of the

PS sequence is

A(� ) = NsW
�k
N2

b

�
�
R
�
�;N2

b

��
: (11)
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Figure 1: The autoautocorrcorrelation function of

the PS sequence.

As we can see in (11) and Figure 1, the auto-

correlation function has a nonzero value only when

� = iN2
b , i = 0; 1; :::;K � 1. That is, delayed PS

sequences will have no autocorrelation at some in-

tervals: we can control the interval by choosing the

value of Nb. On the other hand, the PN sequence

has nonzero values of the autocorrelation function

at all intervals.



Case

jC(� )j=Ns; � = 0; 1; :::; Ns� 1

kI 6= kII

0

kI = kII = k;mI 6= mII

1
Nb

kI = kII = k;mI = mII ;
�
�I
	 6= �

�II
	

1
Nb

���PNb�1
p=0 �Ip�

II�
p W

�p
Ns

��� �(R(�;Nb))

Table 1: A summary of the cross-correlation func-

tion normalized absolute values.

3.2 Cross-correlation

Let us denote two PS sequences as
n
cIl;k

o
andn

cIIl;k

o
. Then, as shown in [5], the cross-correlation

function of the two sequences is

C(� ) = KNbW
�kI

Ns

Nb�1X
p=0

Nb�1X
q=0

�Ip�
II�
q W

�p

N2

b

�
�
R
�
� +mIp�mIIq;Nb

��

�
��
kI � kII +K(p � q)

	�
;(12)

where � represent the complex conjugate and the

superscripts I and II of k, m, and � are used to

distinguish the two sequences.

In Table 1, the normalized absolute values of the

cross-correlation function are shown for 3 distinct

cases. In the �rst case (kI 6= kII), we see the

normalized absolute cross-correlation function is 0.

In this case, the cross-correlation is not dependent

on the values of the other parameters, m and �.

When kI = kII = k and mI 6= mII , the absolute

value of the normalized cross-correlation function is

1=Nb. Finally, when kI = kII = k, mI = mII , and�
�I
	 6= �

�II
	
(in other words, when only the �'s

for the two sequences are di�erent), the normalized

absolute value of the cross-correlation function is 0

except for � = nNb; n = 0;�1;�2; :::;�(KNb� 1).

In this case, if we focus on the zero-shifted inter-

val (� = 0) of the cross-correlation, the normalized

absolute value can be made to be 0 at � = 0 by

choosing �i's to satisfy
PNb�1

p=0 �Ip�
II�
p = 0.

Now, we need some de�nitions and theorems for

clearer explanations.

De�nition 4. An mk-subset of the PS sequence is

the set of fclkg's generated by the same values of k

and m.

De�nition 5. We de�ne a k-class of the PS se-

quence as a collection of mk-subsets which have the

same value of k.

Note that the family of k-classes constitutes a

partition of the PS sequence, and the family of mk-

subsets constitutes a partition of a k-class.

Theorem 1. The autocorrelation function of the

PS sequence is zero except when the time di�erence

is a multiple of the square of the number of the basic

symbols.

Theorem 2. Two PS sequences chosen from dif-

ferent k-classes have no cross-correlation.

Theorem 3. The absolute value of the cross-

correlation between two PS sequences chosen from

di�erent mk-subsets in the same k-class is 1=Nb .

Theorem 4. If
PNb�1

p=0 �Ip�
II�
p = 0, the abso-

lute value of the cross-correlation C(� ) between two

PS sequences chosen from the same mk-subset is

zero for j� j < Nb and iNb < j� j < (i + 1)Nb,

i = 1; 2; :::;KNb� 2.
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Figure 2: The cross-correlation function of the PS

sequence.

Proofs of Theorems 1-4 can be found in [5]. In

Figure 2, we show the normalized cross-correlation

function for various cases. Theorem 2 implies that

we can choose K sequences which do not have any

cross-correlation. Viewing the Nb basic symbols

�i; i = 0; 1; ::; Nb � 1 as a complex vector ~�, there

exist (at most) Nb orthogonal vectors in the com-

plex vector space CNb : this means that there are

Nb sequences with
PNb�1

p=0 �Ip�
II�
p = 0 in an mk-

subset. Thus, fromTheorems 2 and 4, we can choose

KNb sequences which have no cross-correlation for

j� j < Nb.

4 Applications in QS-CDMA

systems

Here, the channel is modeled as frequency selec-

tive, time nonselective, slow Nakagami fading chan-

nel with additive white Gaussian noise. To modu-

late information symbols, M-ary phase shift keying

(MPSK) is used. Coherent reception is considered

to analyze the performance of QS-CDMA systems.

For the receiver, RAKE receiver model is assumed.



Here, Nakagami probability density function

is fl;k(x) = M (x; p;

(k)
l ) with M (r; p;
) =

2ppr2p�1

�(p)
p exp
�� p


r
2
�
;where p is a positive real num-

ber, 

(k)

l = 

(k)
0 e��l; � � 0; and � is a positive real

number. Gaussian noise has a variance of �0=2.

Under these assumptions, the average symbol er-

ror probability is [5]

PM =

r

s

1 + 
s

(1 + 
s)
�ps �

�
ps +

1
2

�
p
�� (ps + 1)

2F1

�
1; ps +

1

2
; ps + 1;

1

1 + 
s

�
; (13)

where 
s =

 q(L�r;2�)
2p q(L�r;�) sin

2 �
M
; ps = p

q2(Lr;�)
q(Lr;2�)

;

�(z) is the gamma function, 2F1 (a; b; c; z) is a hy-

pergeometric function de�ned as 2F1 (a; b; c; z) =P
1

k=0

(a)k(b)kz
k

(c)
k
k! with (a)k = a (a + 1) � � �

(a+ k � 1) ; (a)0 = 1; q (a; b) = 1�e�ab

1�e�b
; and 
 =�

�0

2ENs
N


0

�
�1

. From (13), we can see that there are

some energy losses in the transmitted symbol by a

factor of 2L=N . However, it is clear that the inter-

user interferences are fully rejected. Furthermore,

since the factor 2L=N is relatively quite small in

practical systems, we lose only a small fraction of

energy, and could get high performance gain. Thus

we can expect that the system performance will be

highly improved when compared with the perfor-

mance of other systems without PS sequence.
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Figure 3: The symbol error probabilities of the sys-

tem by using PS sequences and PN sequences, when

p = 1, Lp = 4, � = 0:2, M = 2, N = 194, L = 7,

Ns = 180 and Lr = 1; 4.

Let us de�ne the average signal to noise ratio

(SNR) as 
0 � E
0

�0
: In Figure 3, the symbol er-

ror probabilities of the systems with PN sequences

and those with PS sequence are shown: parameters

are p = 1, Lp = 4, � = 0:2,M = 2, N = 194, L = 7,

and Ns = 180. It is clear to see that the symbol er-

ror probabilities of system with PN sequence dete-

riorates when the number of users increases. When

Lr = 4, we need SNR ' 10 dB to get Pb = 10�3

with the PN sequence for 10 users, while, with the

PS sequence, SNR ' 6 dB is needed even for 20

users.

5 Concluding remark

We have suggested a new class of sequence and a

simple method of generating the sequence. Systems

with the suggested sequences will have no inter-user

interference because of the correlation properties of

the sequence. In addition, the suggested sequence

can be generated by a method consisting only of

integer sums and modular techniques, which makes

the system easy to implement. The performance of

QS-CDMA systems with RAKE receiver in selective

slow Nakagami fading channels using the suggested

sequences was investigated. Since there is no inter-

user interference, performance of the system far out-

performs that of systems using other sequences.
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