
PERFORMANCE EVALUATION OF

ADAPTIVE SUBSPACE DETECTORS,

BASED ON STOCHASTIC REPRESENTATIONS

Shawn Kraut and Louis Scharf

Dept. of ECE, University of Colorado, Boulder
Campus Box 425

Boulder, C0 80309-0425 USA
Tel: (303) 492-2759; fax: (303) 492-2758

e-mail: kraut@colorado.edu, scharf@colorado.edu

ABSTRACT

In this paper we present a technique for evaluating the
moments of \adaptive" detectors, where the noise co-
variance is estimated from training data, rather than
assumed to be known a priori. It is based on the method
of \stochastic representations" recently presented in [1].
These representations express adaptive detectors as sim-
ple functions of the same set of �ve statistically indepen-
dent scalar random variables. They may be applied to
a whole class of detectors, which includes the adaptive
versions of the matched subspace detectors shown to
be UMP-invariant and GLRT in [2] and [3], and to the
adaptive GLRT detector of Kelly [4]. Using a stochastic
representation, the moments of any member of this class
may be evaluated without the need to derive its density
or characteristic function. The �rst two moments give
a convenient measure for how the SNR loss improves as
the number of training vectors, M, increases. In this
paper, the analysis is presented using the example of
the adaptive version of the matched �lter, illustrated in
Figure 1.

1 INTRODUCTION

This paper is concerned with the general problem of
testing the presence of a signal in a multivariate mea-
surement y 2 C

N that has a complex normal distribu-

tion, y � CN [� ; 2R]. The question is whether or not
the signal  is present in the data; this characterizes a
hypothesis test on the scaling parameter �: H0 : � = 0,
vs. H1 : � 6= 0. When the structure of the noise covari-
ance R is known, there is a class of four \matched sub-
space detectors" (MSDs) that can be applied, depending
on whether the noise scaling  and the signal phase are
known or unknown. These detectors have been shown to
be Uniformly Most Powerful Invariant (UMP Invariant)
[2] and Generalized Likelihood Ratio Tests (GLRT) [3].
Here we consider the \adaptive" case in which the

noise covarianceR is unknown and is replaced by an es-
timate R̂ = S based on training data vectors fxig, which
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Figure 1: The matched �lter statistic resolves the
projection of z onto h�i

are independent of y. In [1], we presented the method of
\stochastic representations" for analyzing the statistical
behavior of adaptive detectors constructed in this man-
ner. This method applies to the adaptive versions of
all four MSDs, as well as to Kelly's adaptive GLRT [4].
All of these detectors have a stochastic representation
in terms of the same set of �ve scalar, independent ran-
dom variables, which are either normal or chi-squared
distributed. These representations distill the probabilis-
tic expressions of the adaptive detectors down to their
simplest form, in terms of the same scalar random vari-
ables. They may be used to directly evaluate the mean,
variance, and higher moments of an adaptive detector,
without requiring its density or characteristic function.

The ratio of the di�erence in means to the variance, or
signal-to-noise ratio (SNR) is one simple scalar measure
of how well the probability densities are separated under
the two hypotheses, and thus of detection performance.
In the following sections, we will demonstrate the eval-
uation of the SNR using the example of an adaptive
matched �lter, n̂. This will yield a simple expression for
how the SNR improves as M gets larger and the sample
covariance estimate improves.

To see this behavior graphically, refer to Figure 2,
which shows how the densities of n̂ become better sep-
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Figure 2: Densities for the matched �lter n and the
adaptive matched �lter n̂, for di�erent numbers of train-
ing samplesM ; these were obtained from a Monte Carlo
simulation using the canonical representation of n̂. As
M increases, the separation between the two hypotheses
improves. (Here N = 10 and j�2j yR�1 =5).

arated as the number of training vectors, M, increases.
Figure 3 indicates the corresponding improvement in de-
tection performance, as shown by the Receiver Operat-
ing Characteristics (ROC).

2 MATCHED SUBSPACE DETECTORS

The detector we will analyze in the following sections is
the adaptive version of the matched �lter, which resolves
the projection of the measurement y onto the subspace of
the signal (or steering vector)  , in coordinates whitened

by R�1=2, and compares it with a threshold �:

Re[n] >< �; n =
 yR�1y



q
 yR�1 

(1)

This is depicted geometrically in Figure 1, where the
whitened measurement and signal are denoted by z =
R� 1

2 y and � = R� 1

2 . When R is known, the matched

�lter is normally distributed: n � CN [�


q
 yR�1 ; 1].

When the noise covariance has an unknown scaling,
, then the appropriate detector is the CFAR matched

�lter [2, 3]:

Re[cos] >< �; cos =
 yR�1yq

yyR�1y
q
 
y
R�1 

(2)

This is simply the matched �lter divided by the magni-
tude of the whitened measurement vector. This oper-
ation makes the detector invariant to arbitrary scaling
of the measurement, and makes it CFAR with respect

to the variance level . Referring again to Figure 1,
the CFAR MSD measures the cosine of the angle that z
makes with  , rather than its projection onto h i.
In the noncoherent case, when the phase of the signal

 is unknown, these two detection statistics are mod-
i�ed by magnitude squaring them, yielding two more
statistics, �2 = jnj2 and � = jcosj2.
When the covariance R is unknown, all four detec-

tors may be modi�ed by simply replacing R with its
estimate, S. The resulting detectors, along with the
stochastic representations that are explained in the next
section, are summarized in Figure 4. For the coherent
and noncoherent versions of the matched �lter, this pro-
cedure is ad hoc, as the true GLRTs are given by the
Kelly detector of [4], and its coherent version (neither
are shown here, though the method of stochastic rep-
resentations can be applied to them as well). For the
coherent and noncoherent CFAR matched �lters, this
procedure is not ad hoc; it does produce the true GLRT,
as we have recently shown in [5].

3 DERIVING STOCHASTIC REPRESENTA-

TIONS

Now we present a method for succinctly characteriz-
ing the statistical behavior of adaptive detectors which
employ the sample estimate of R, namely R̂ = S =
1
M

PM
i=1 xix

y
i , (We assume that the training data used

to build R̂ is complex Gaussian distributed: xi �
CN [0;R].) An example is the adaptive matched �lter
statistic, n̂, given by

n̂ =
 yS�1y



q
 yS�1 

(3)
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Figure 3: Receiver operating characteristics for the
matched �lter n and the adaptive matched �lter n̂. As
M increases, the detection performance improves.



n̂ =
 yŜ�1y


p
 yŜ�1 

ccos =  yŜ�1yp
yyŜ�1y

p
 yŜ�1 

=
p
Mp
h1

h
n+

p
g h3p

h2

i
= t̂p

jt̂j2+1
; where

t̂ = 1p
h1

h
np
g

p
h2 + h3

i
c�2 = j yŜ�1yj2

2 yŜ�1 
�̂ =

j yŜ�1yj2

(yyŜ�1y)( yŜ�1 )

= M
h1

���n+p
g h3p

h2

���2 = F̂

F̂+1
; where

F̂ = 1
h1

��� npgph2 + h3

���2
n; g; h1; h2; h3 all j= (independent)

n � CN [�


p
 yR�1 ; 1] (H0 : � = 0); g � 

N�1 [0]

h1 � M�N+1
[0] ; h2 � M�N+2

[0] ; h3 � CN [0; 1]

Figure 4: The stochastic representations of the four
adaptive matched subspace detectors.

The derivation of the representation for n̂ will only
be briey described here; the method is presented in
complete detail in [1, 6]. The method may be outlined
in four steps: (1) Apply the whitening transformation

R� 1

2 to the training and test data; this generates the
transformed signal vector � = R� 1

2 , and test vector

z = R� 1

2 y. (2) Next apply a unitary transformation
to rotate to a coordinate system in which the �rst two
basis vectors are set in the direction of � and P?� z. (3)
Resolve the inverse of the sample covariance matrix S
onto the 2� 2 subspace h�;P?� zi. (4) Perform a change

of variables on the elements of the resulting 2�2 covari-
ance matrix so that these variables are now statistically

independent.

This results in the following stochastic representation
for n̂:

n̂ =

p
Mp
h1

�
n+

p
g
h3p
h2

�
(4)

This representation is in terms of �ve statistically inde-
pendent variables. Two of these, n and g, depend solely
on the measurement y: n is the nonadaptive matched

�lter of Equation 1, and 2g = zy(I � P�)z is an es-

timate of (N � 1)2. Then g has a gamma distribu-
tion (it is a chi-squared random variable scaled by 1

2
):

g � 
N�1 [0]. The other three, h1,h2, and h3, depend

solely on the training data fxig, and have gamma or
normal distributions. The canonical representations for
n̂, as well as for the other three MSDs are summarized
in Figure 4.

4 USING THE CANONICAL REPRESENTA-

TIONS TO EVALUATE MOMENTS

The expressions in Figure 4 can be written in terms of
sums and products of scalar random variables. For ex-
ample, an adaptive matched �lter n̂ involves sums and
products of n,

p
g, 1p

h1
, 1p

h2
, and h3. For two indepen-

dent random variables, a and b, the expectation of their
sums and products is given by

E[a+ b] = E[a] +E[b]

E[a � b] = E[a] �E[b]: (5)

Similarly, one can also obtain \propagation of variance"
formulas for the variance of their sums and products
(this is in analogy with the \propagation of error" for-
mulas used to evaluate the uncertainty in an experi-
mentally derived quantity, due to the uncertainties in
measured quantities). Note however that the following
expressions are exact :

var[a + b] = var[a] + var[b]

var[a � b] = (E[a])2var[b] + (E[b])2var[a]

+var[a]var[b] (6)

Let us consider densities of the variables in the rep-
resentation for n̂: n and h3 have complex normal dis-
tributions;

p
g has a scaled Rayleigh distribution, and

1p
h1

and 1p
h2

are inverse scaled Rayleighs. The square

root of a gamma with p degrees of freedom,
p
p, has the

following moments:

E[
p
p] =

�(p+ 1
2
)

�(p)
; E[(

p
p)

2] =
�(p+ 1)

�(p)
(7)

Similar expressions may be found for the �rst two mo-
ments of the inverse scaled Rayleigh, 1p

q
.

E
h
1
�p
q

i
=

�(q � 1
2
)

�(q)
; E

��
1
�p
q

�2�
=

�(q � 1)

�(q)
(8)

By repeated application of Equations 5-6, we can ex-
press the mean and variance of n̂ and the other adaptive
MSDs detectors in terms of the moments of the gamma
and Rayleigh densities. Under the signal-absent hypoth-
esis H0, n̂ has zero mean. Under the signal-present hy-
pothesis H1, n̂ has a mean given by

E1(n̂) =
p
M

�(M �N + 1
2
)

�(M �N + 1)
�n �

s
M

M �N � 1
4

�n; (9)

where �n is the mean of the nonadaptive matched �l-
ter under the signal-present hypothesis: �n = E1(n) =
�


q
 yR�1 . (The approximation of the ratio of

Gamma functions is obtained from the asymptotic ap-
proximation �(z + 1

4
) �

p
2�zz�

1

4 e�z.) The exact vari-
ance under H0 is given by

�20(n̂) =
M2

(M �N)(M �N + 1)
: (10)



And the variance under H1 is given by

�21(n̂) = �20(n̂)
�
1 + �n2�n(M;N)

�
;

�n(M;N) =
M �N + 1

M

�
1� (M �N)�(M �N + 1

2
)2

�(M �N + 1)2

�

� M �N + 1

4M(M �N + 1
4
)
� 1

4M
: (11)

The variance under H1 is larger, so a pessimistic esti-
mate of the SNR is given by

SNR(n̂) =
[E1(n̂)�E0(n̂)]

2

�21(n̂)
=

[E1(n̂)]
2

�20(n̂)[1 + �n2�n(M;N)]

=
(M�N)(M�N+1)�(M�N+ 1

2
)2

M�(M�N+1)2
� �n2

1 + �n2�n(M;N)

� M �N

M
� �n2

1 + �n2

4M

: (12)

Normalizing this by the SNR of the nonadaptive

matched �lter, namely SNR(n) = �n2
�
1, gives

SNR(n̂)

SNR(n)
� M �N

M
� 1

1 +
SNR(n)

4M

�

8>><
>>:

4(M�N)

SNR(n)
; 4M � SNR(n)

M�N
M

; 4M � SNR(n)

(13)

For the performance of the adaptive detector to ap-
proach that of the non-adaptive detector, this ratio
needs to be close to unity. This in turn gives a mini-
mal requirement that M � SNR(n)

�
4 (incidently, this

condition makes �21(n̂) � �20(n̂)). Then the second ap-
proximation of Equation 13 can be used to determine
how large M (number of training vectors) needs to be
to only su�er x% of SNR loss:

M �N

M
=

100� x

100

! M =
N

x
� 100: (14)

To lose less than 5% of the SNR, this says M has to
be larger than 20 �N (where N is the dimension of the
measurement and signal vectors), etc.

5 Conclusion

We have presented stochastic representations for four
adaptive matched subspace detectors and shown how
they may be applied to �nd the detector moments and
evaluate the SNR as a �gure-of-merit for detector perfor-
mance. It should be noted that by integrating over the
densities of the constituent random variables in the rep-
resentations given in Figure 4, explicit analytic functions
for the density and characteristic function of an adaptive
detector can be obtained. However, these expressions in-
volve in�nite sums and/or inde�nite integrals that need

to be numerically approximated [4, 7, 8, 9]. By making
use of the fact the the constituent random variables in a
stochastic representation are statistically independent,
we have shown how exact analytic expressions for the
moments can be obtained, bypassing the complexity of
the density and characteristic function. In this way we
can characterize how the performance of the adaptive
detectors approaches that of their non-adaptive coun-
terparts, as the number of training samples in the esti-
mated covariance matrix gets large.
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