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Abstract| In this paper two algorithms for the construc-

tion of feedforward neural network architectures are dis-

cussed. Their close relation with a special class of decision

tree classi�ers is commented. Finally, the performance of

the algorithms is assessed on a complex cytological pattern

classi�cation application.
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INTRODUCTION

One of the major problems in the �eld of neural networks
(NN) is the estimation of the size of the architecture as
well as the determination of the corresponding parameters.
Algorithms such as back propagation and its variants (e.g.
[1], [2], [3]) compute the parameters for �xed size neural
network architectures, while others determine dynamically
the size as well as the corresponding parameters (eg. [4],
[5], [6], [7], [8]).
In this paper two algorithms that construct three layer

architectures are discussed. The number of the �rst lay-
er nodes is of the same order with that of architectures
trained using back propagation. Moreover, the generaliza-
tion ability exhibited by the resulting architectures is very
satisfactory. Finally, these algorithms are closely related to
a special class of decision tree classi�ers, known as Linear
Tree Classi�ers (LTC).
Both algorithms follow the divide and conquer principle.

More speci�cally, the �rst one, which is called SNN (Sepa-
ration of Nearest Neighbors from di�erent categories), �nds
the closest pair of the available patterns x; y that belong to
di�erent categories and constructs the hyperplane H that
bisects the line segment xy. This procedure is applied re-
cursively on the available patterns lying on the positive
(negative) side of H until all the de�ned regions contain
patterns of the same category.
The second algorithm, called OSC (Optimal separation

of categories), determines a hyperplaneH that achieves the
best possible partition of the available patterns and then is
applied recursively on the available patterns lying on the
positive (negative) side of H. Again, the algorithm stops
when all the de�ned regions contain patterns from the same
category.
In the sequel we denote by SNN (S) and OSC(S) the

architectures provided by SNN and the OSC algorithm,
respectively, when applied on the data set S.
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Both algorithms classify correctly all the patterns of S
and they are insensitive to the order of presentation. Also,
it is worth noting that the resulting architectures do not
implement the Voronoi tessalation (eg. [6]) of the feature
space.

THE ALGORITHMS

A single � node with weight vector w0 = [w1; . . . ; wd],
threshold w0 and the hard limiter as output function, im-
plements the separation of Rd achieved by the hyperplane

H, wT
x =

Pd

j=0wjxj = 0, where w = [w0

; w0]T and

x0 = 1. If for a point x 2 R
d, wT

x > 0(< 0), the output
of this node will be +1 (�1). The architectures produced
by both SNN and OSC employ � nodes only.
We consider the two category classi�cation problem. Let

I = f�1; 1g, A � R
d and

S = f(xi; ti); xi 2 A; ti 2 I; i = 1; . . . ; pg:

S is the training set and ti denote the labels of the patterns.

The SNN algorithm

This algorithm �rst determines the �rst layer nodes of
SNN (S) and then the second layer nodes. The third lay-
er consists of a single � node. The �rst layer nodes cor-
resspond to hyperplanes that bisect line segments and are
determined by the following recursive procedure

� procedure SNN first layer nodes(S)
{ If all patterns of S belong to the same category then
� return

{ Else
� (A) Find the closest pair of patterns x; y 2 S such

that x (y) belongs to category 1 (�1).
� (B) Construct the hyperplane HS that bisects the

line segment xy with x lying on its positive side.
Let S+ = S \H

+

S and S
� = S \H�

S , where H
+

S

(H�

S ) denotes the positive (negative) half space
of HS .

� call SNN first layer nodes(S+)
� call SNN first layer nodes(S�)

{ End if
� End procedure.
Let k be the number of hyperplanes. For each hyperplane

H de�ned by the above procedure a � node, FH , that
implements the separation implied by H is employed. Each
such node is attached to the �rst layer. Thus, the number
of the �rst layer nodes is k.
Let Ri, i = 1; . . . ; l, be the regions de�ned by the above

hyperplanes that contain patterns from category 1. The



second layer consists of l nodes, NRi
, i = 1; . . . ; l, each one

corresponding to one of the above regions. What remains
to be determined is the connections between the �rst layer
nodes and each one of the second layer nodes. For each
node NRi

. The following recursive procedure determines
the connections ending to NRi

.
� procedure connections(Ri;HS)
{ If Ri = S then
� return

{ Else if Ri lies on the positive side of HS then
� Connect FHS

with NRi
with weight connection e-

qual to 1.
� call connections(Ri;HS+)

{ Else if Ri lies on the negative side of HS then
� Connect FHS

with NRi
with weight connection e-

qual to �1.
� call connections(Ri;HS�)

{ End if
� End procedure.
The threshold for NRi

is set to mi�0:5, where mi is the
number of corresponding weights. Finally, the outputs of
the second layer nodes are fed to the third layer node with
threshold �l + 1. The connection weights are all set to 1.
One can easily verify that l = k+1=2 when k is odd and

l = k=2 or k=2 + 1 when k is even. The behavior of the
constructed architecture is very simple to explain. What
SNN (S) essentially does is to determine the region where
the input pattern x lies and to assign the input pattern to
the category where the points of that region lie.

The OSC algorithm

As in the SNN algorithm, the OSC algorithm �rst de-
termines the �rst layer nodes of OSC(S), then the second
layer nodes and then the connections between the �rst and
the second layer.
The recursive procedure, OSC first layer nodes(S),

that determines the �rst layer nodes of the network is the
same with OSC first layer nodes(S), with the exception
that the steps (A) and (B) are substituted by the following
step.

� Find a hyperplane HS that minimizes the number of
the misclassi�ed patterns of S. Let S+ = S \H+

S and
S
� = S \ H

�

S , where H
+

S (H�

S ) denotes the positive
(negative) half space of HS .

The second and the third layer nodes as well as the connec-
tions between the �rst and the second layer are determined
exactly as in the SNN algorithm.

OSC1 AND OSC2 SCHEMES

As we saw earlier, the OSC first layer nodes proce-
dure, determines hyperplanes that minimize the number
of misclassi�ed patterns of S. However, this is not easy
even for moderate sizes of S. In order to overcome this
problem approximate OSC schemes can be used. The �rst
scheme, called OSC1, employs the pocket algorithm ([9])
for the determination of the best separating hyperplane H
at each step.

Another variant of OSC, also called OSC2 scheme, em-
ploys the well known LMS algorithm (eg. [3]) for the de-
termination of the separating hyperplane H at each step.
In contrast to the pocket algorithm, the LMS algorithm
takes into account the distance of each pattern from the
hyperplane.

CONNECTION WITH DECISION TREES

Decision tree classi�ers (eg. [10]) have been successfully
used in pattern recognition applications. A special class
of the above classi�ers contains the so called Linear Tree
Classi�ers (LTC) (eg. [11]). An LTC consists of a root
node, a set of terminal nodes and a set of non terminal
nodes. Each of the nonterminal nodes is associated with a
linear discriminant function (or equivalently a hyperplane
in the feature space). An LTC performs a hierarchical par-
tition of the feature space into nonoverlapping polyhedral
sets (i.e. sets de�ned as intersections of half-spaces). Each
terminal node corresponds to one of the above regions and,
each such region is assigned to a class. In order to decide
to which category a given pattern x belongs, we have to
compute the value of the discriminant function of the root
node and, according to the resulting value, we move to the
next node. This procedure continues until a terminal node
is reached.

LTC's are closely related to the 3-layer feedforward neu-
ral networks with � nodes. Speci�cally, in [12], [11], it is
discussed how an LTC can be mapped into a 3-layer feed-
forward neural network, of the structure discussed above.

The major problem associated with the design of an LTC
is the choice of the optimal number of nodes as well as
the determination of the discriminant functions associated
with each one of them. It is not di�cult to realize that the
above algorithms can also be used for the construction of
LTC's. Speci�cally, only the procedures that construct the
�rst layer nodes are needed.

PERFORMANCE OF THE ALGORITHMS ON

A REAL CYTOLOGICAL PROBLEM.

Presentation of the Speci�c Cytological Diagnostic Prob-

lems

During the last decade several e�orts to test the capa-
bility of Arti�cial Neural Networks (ANNs), to perform
medicine diagnostic tasks have been reported [13], [14].
Classi�cation, pattern recognition and decision support are
some of the most important and emerging applications of
neural nets in the �eld of cytology.

Gastric cytology has not reached wide acceptance in the
investigation of gastric lesions because of the di�culties in
the discrimination of benign lesions with severe regener-
ative alterations from well di�erentiated cancer cells [15].
Several e�orts to solve this problem by statistical evalua-
tion of the morphometric data has not yielded to the indi-
vidual patient level. Recently attempts to solve the prob-
lem of classi�cation both at cellular level and at the patient
level have appeared [13].



Geometric Densitometric
features features

Area Mean value of histogram
Perimeter Standard deviation of histogram
Major axis Variance of histogram
Minor axis Short run of run length matrix
Diameter Long run of run length matrix
Circularity Grey level of run length matrix
Roundness factor Distribution of run length matrix
Contour ratio Maximum of co-occurrence matrix
Contour index Inertia of co-occurrence matrix
Form area Entropy of co-occurrence matrix
Form perimeter Contrast of di�erences histogram

Mean value of di�erences histogram
Standard deviation
of di�erences histogram

Entropy of di�erences histogram
TABLE I: The measured features.

The Cell Classi�cation System

The cell measurement process is accomplished by the
image processing system. An image acquisition module ac-
quires images and transforms them to electrical signals. It
is followed by the next module that performs the image
sampling and quantization. Next the image segmentation
subsystem isolates objects on the images. Each object is
represented by a vector via the feature extraction subsys-
tem which implements a number of measurements. Finally
each vectorial representation of the cell is processed by one
or a group of classi�ers that assigns the cell nuclei to cate-
gories.

In the speci�c context of the cytologic application the
above image processing system is speci�ed as follows:

The image acquisition subsystem consists of a color CCD
camera attached to the top of a microscope. The remain-
ing subsystems are implemented by software. The image
segmentation subsystem aims at the isolation of the cell nu-
clei. The variety of image types make segmentation hard.
A mix of manual and completely automated segmentation
techniques have been developed, depending on image type
and the quality of the resulting outcome. Feature extrac-
tion is also performed by software. Three types of measures
are considered: size, shape and texture, based on stan-
dard cytological practice. Table I summarizes the feature
information generated by the extraction system for each
nucleus. Features are grouped according to the physical
characteristics of cells into two categories: geometric and
densitometric; densitometric features are associated with
texture.

The geometric features are related to the coordinates of
the lines that represent the boundary of a nucleus. They
describe properties relevant to the size (for example area,
perimeter, diameter) and the shape (eg. form area, form
perimeter, circularity). A detailed description of the com-
putational methods employed to determine the geometric
characteristics is supplied in [16], [17]. Densitometric fea-
tures are relevant to the values of the pixels inside the re-

Algorithm Benign Malignant OA

NSS 100% 100% 100%
OSC1 100% 100% 100%
OSC2 100% 100% 100%
BP 90.3% 87.1% 89.5%

TABLE II: Performance of the classi�cation schemes when
applied on the training set. The numerals show the
mean number of correctlly classi�ed patterns in each class.
BP=back propagation, OA=overall accuracy.

gion that is created by the lines surounding the nucleus.
Densitometric characteristics are relevant to texture

caused by the nucleus chromatin. From the various meth-
ods proposed in the literature for textural descriptors (see
[16], [18], [19]), four models have been implemented, based
on: a) histogram b) di�erences histogram c) run length
matrix properties and d) co-occurrence matrix properties.
The �rst two models are computationally simple but tex-
ture discrimination is poor. The other two models are
more complex but give better information about the tex-
ture structure [19]. A detailed description of the computa-
tional methods of textural features is provided in [19].
The classi�cation subsystem relies on neural network ar-

chitectures and targets to bipartite classi�cation into be-
nign and malignant cells.

Data set

The aforementioned feature extraction mechanism leads
to nucleus representations by vectors of 25 components (11
related to geometric features and 14 related to densitomet-
ric features).
The data set consists of 3538 vectors. 851 of these are as-

sociated with cancer or neoplastic nuclei (malignant) and
the remaining 2687 vectors are related to non neoplastic
(benign) nuclei that are caused by gastritis or ulcer. 10%
of the data of each class are randomly selected for training.
Thus the total training set contains 354 vectors: 85 derived
from cancer of neoplastic nuclei and 269 derived from be-
nign nuclei. The remaining data in the test set consists
of 766 vectors from malignant cases and 2418 vectors from
benign lesions.
Note that nucleus classi�cation was carried out by three

expert cytologists, to ensure that all cells are correctlly
classi�ed.
For comparison purposes a two layer back propagation

network has been employed. The number of nodes for the
hidden layer is incremented one and increased by one neu-
ron for each trial until it reached 50 neurons. The architec-
ture that gave the better generalization results was �nally
used.
All algorithms were tested ten times by selecting di�erent

training sets of the same number of vectors and by using
the remaining data as test sets.
The results are summarized in tables II and III. The

percentages and the numbers of nodes that appear in the
tables are averaged over the ten trials.



Algorithm B M OA # of nodes

SNSS 94.79% 89.01% 93.40% 37.6
OSC1 96.93% 85.48% 94.17% 5
OSC2 97.25% 86.58% 94.68% 4.2
BP 88.96% 74.67% 85.52% 25-7.5-1

TABLE III: Performance of the classi�ers when applied
on the test set. The numerals show the mean num-
ber of correcly classi�ed vectors in each class.The last
column shows the mean number of nodes for each ar-
chitecture. BP=back propagation, OA=overall accuracy,
M=malignant, B=benign.

CONCLUSIONS

In this paper two algorithms for the construction of neu-
ral network architectures are discussed. The performance
of the above algorithms has been tested on a complex cyto-
logical case, the obtained results are more satisfactory than
those given by other classi�ers used in such applications.
Table III indicates that the OSC algorithms are capable of
encoding a greater amount of information than the SNN
algorithm. This is due to the fact that the two version-
s of the OSC algorithm create the separating hyperplanes
taking into account all the available patterns, while SNN
creates its separating hyperplanes taking into account on-
ly the two closest of the available patterns that belong to
di�erent categories.
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