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ABSTRACT

The binormalized data-reusing least mean squares

(BNDR-LMS) algorithm has been recently proposed

and has been shown to have faster convergence than

other LMS-like algorithms in cases where the input sig-

nal is strongly correlated. This superior performance

in convergence speed is, however, followed by a higher

misadjustment if the step-size is close to the value which

allows the fastest convergence. An optimal step-size se-

quence for this algorithm is proposed after considering

a number of simplifying assumptions. Moreover, this

work brings insight in how to deal with these con
icting

requirements of fast convergence and minimum steady-

state mean square error (MSE).

1 INTRODUCTION

The simplicity of the least mean squares (LMS) algo-

rithm has motivated alternative schemes which try to

compensate for its main drawback, the dependence on

the eigenvalue spread of the input autocorrelation ma-

trix at the expense of a minimum extra computational

load [1, 2]. The BNDR-LMS algorithm [3, 4] o�ers faster

convergence than a number of other normalized LMS al-

gorithms for a highly correlated input signals at the cost

of a small additional complexity. The MSE after con-

vergence for this algorithm is controlled by a step-size

parameter �. For � = 1, we have the fastest convergence

and also the highest steady-state MSE when compared

to the values of the step-size closer to zero.

In [4], it was shown that the BNDR-LMS algorithm

convergences if the step-size is in the range from zero to

two. For practical reasons, the value of � is kept between

zero and one since it was observed that the steady-state

MSE was higher and the convergence slower when the

step-size was set to a value between one and two.

Only after [5] an analysis for the MSE behavior of

the BNDR-LMS algorithm was available. In this paper,

the expression for the MSE developed in [5] is used to

propose an optimal step-size sequence which allows a

fast convergence and a minimum misadjustment.

�This work was partially supported by CAPES, Brazil.

The paper is organized as follows. In Section 2 we

present the BNDR-LMS algorithm as well as its conver-

gence behavior. Section 3 develops the optimal step-size

sequence of �(k). In Section 4 several approximations

for this optimal sequence are proposed and simulation

results are presented. Finally, Section 5 draws some

conclusions.

2 THE BNDR-LMS ALGORITHM

The BNDR-LMS algorithm employs normalization on

two orthogonal directions obtained from consecutive

data pairs within each iteration. These data pairs are

the input data vectors and the reference or desired sig-

nal at instants k and k� 1, denoted by (x(k); d(k)) and

(x(k � 1); d(k � 1)). This algorithm is described by the

equations of Table 1. According to the notation used in

Table 1, the coe�cient vector is given by w(k).

In order to use the results from [5], let us assume that

an unknown FIR �lter is to be identi�ed by an adaptive

�lter of the same order (system identi�cation problem),

employing the BNDR-LMS algorithm. The input signal

and measurement noise are assumed to be independent

and identically distributed zero mean white noise with

variances �2x and �2n.

The �nal expression for the convergence behavior of

the BNDR-LMS algorithm obtained in [5] is given in

terms of the excess in the MSE de�ned as the di�erence

between the MSE and the minimum MSE after conver-

gence or ��(k) = �(k) � �min = E[e2(k)] � �2n, since

we assume here that the minimum mean square error is

caused only by additional noise.

��(k + 1) =

�
1 +

�(�� 2)

N + 1

�
��(k)

+
N�(1� �)2(�� 2)

(N + 1)2
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+
(1 +N(�� 2)2)�2

(N + 1)(N + 2� �x)
�
2
n (1)

The term �x is known as the kurtosis of the input

signal and it is, for the sake of simplicity, assumed here



Table 1: The Binormalized Data-Reusing LMS Algo-

rithm [4].

BNDR-LMS

� = small value

for each k

f x1 = x(k)

x2 = x(k � 1)

d1 = d(k)

d2 = d(k � 1)

a = xT1 x2
b = xT1 x1
c = xT2 x2
d = xT1w(k)

if a2 == bc

f w(k + 1) = w(k) + �(d1 � d)x1=(b+ �)

g
else

f e = xT2w(k)

den = bc� a2

A = (d1c+ ea� dc� d2a)=den

B = (d2b+ da� eb� d1a)=den

w(k + 1) = w(k) + �(Ax1 +Bx2)

g
g

to be equal to unity. This expression for the excess in the

MSE [1] was obtained with the help of a simple model

[6] for the input signal vector given by

x(k) = skrkV k (2)

where sk is �1 with probability 1=2, rk has the same

distribution as k x(k) k or E[r2k] = (N + 1)�2x, and

V k is one of the N + 1 orthonormal eigenvectors of the

autocorrelation matrix R of the input signal. It was

assumed in the analysis that each vector V i occurs with

an equal probability of 1=(N + 1) which means white

noise type input.

3 THE OPTIMAL STEP-SIZE SEQUENCE

In this section the optimal step-size sequence for the

given problem is derived. From the expression of ��(k+

1), we will follow an approach similar to that used in [6]

and rewrite (1) assuming that up to time k we have the

optimal sequence ��(0) to ��(k � 1) already available

and also the optimal quantities ���(k) and ���(k� 1).

��(k + 1) =

�
1 +

�(k)(�(k)� 2)

N + 1

�
��

�(k)

+
N�(k)(1� �(k))2(�(k)� 2)

(N + 1)2
��

�(k � 1)

+
(1 +N(�(k)� 2)2)�(k)2

(N + 1)2
�
2
n (3)

If we now compute the derivative of ��(k + 1) with

respect to �(k) and make it equal to zero, we obtain

after some algebraic manipulation

�
�(k) = 1�

s
1�

���(k) + ���(k � 1)

2(���(k � 1) + �2n)

= 1�

s
1�

��(k) + ��(k � 1)� 2�2n
2��(k � 1)

(4)

It is worth mentioning that (4) is in accordance with the

situation when the convergence is reached; in that case

we have ��(k) = ��(k � 1) = �2n and therefore we have

��(k) = 0 as expected. Moreover, if we have �2n = 0

the value of ��(k) will be close to one (admitting that

���(k) � ���(k � 1)) even after convergence, which

means that we should have maximum speed of conver-

gence with minimum misadjustment if the noise is zero.

For the normalized LMS (NLMS) algorithm, a recur-

sive formula for ��(k) in terms of ��(k � 1) and the

order N was obtained in [6]. Unfortunately, a similar

expression could not be obtained for the BNDR-LMS

algorithm. Instead, a simple algorithm was used to pro-

duce the optimal step-size sequence. This algorithm is

presented in Table 21 and has one important initializa-

tion parameter with a strong in
uence on the behavior

of ��(k). This parameter is the ratio
�2
d

�2
n

where the nu-

merator is the variance of the reference signal.

Table 2: Algorithm for computing the optimal step-size

sequence.

�(k) of the BNDR-LMS algorithm

��(0) = ��(�1) = �2d
�2n = noise variance

N = adaptive �lter order

�(0) = 1

for each k

f �(k) = 1�
q
1� ��(k)+��(k�1)

2(��(k�1)+�2
n
)

aa =
h
1 +

�(k)(�(k)�2)
N+1

i
bb =

N�(k)(1��(k))2(�(k)�2)
(N+1)2

cc =
(1+N(�(k)�2)2)�(k)2

(N+1)2
�2n

��(k + 1) = aa��(k) + bb��(k � 1) + cc

g

We next present in Fig. 1 the curves of �(k) for di�er-

ent values of what should be called in this case (desired)

signal to noise ratio or SNR = 10log
�2
d

�2
n

from 0 to 40 dB.

Note that for �2n = 0 (noiseless case), the SNR goes to

in�nity and the step-size would remain �xed at unity.

1Note that the asterisk (*) was dropped out from the optimal

values for simplicity only.
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Figure 1: Optimal �(k) sequences for the BNDR-LMS

algorithm.

4 SIMULATION RESULTS

In this section the results of a few experiments will

demonstrate the superior performance obtained with the

proposed adaptive step-size scheme. In a practical im-

plementation the optimal sequence can be computed a

priori and stored in memory or computed on the 
y.

For this last option, since a recursive and compact for-

mula is not available, an approximation of the curve is

of great interest. We will use here two classes of se-

quences also proposed in [6]. They were chosen due to

their simplicity and, as will be seen later, lead to good

results. The �rst class is the optimal sequence for the

NLMS algorithm. It is given by

�(k) = �(k � 1)
1� �(k�1)

N+1

1� �2(k�1)
N+1

(5)

For the NLMS algorithm, the correct initialization for

this sequence is given by �(0) = 1 �
�2
n

�2
d

. However, in

our case we can choose an initial value for the step-size

such that the two sequences are close, as will be seen.

The second class of sequences (referred to hereafter

as the 1=k approximation) is quite simple and was also

used in [6]. This sequence is given by

�(k) =

(
1 if 0 � k � c(N + 1)

maxf�min;
1

1�c+ k

N+1

g if k > c(N + 1)

(6)

The parameter c will be related to the SNR of the

optimal sequence. A minimum step-size was introduced

here (it can be used in all sequences as well) in order to

provide a tracking capability to the algorithm.

optimal sequence                  
NLMS approximation (0.9, 0.93 and 0.95)
1/k approximation (c=1, 2 and 3)   

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
OPTIMAL STEP−SIZE SEQUENCE FOR SNR=20dB

k

st
ep

−
si

ze

Figure 2: Optimal step-size sequence and two classes of

approximation sequences.

For the �rst simulation, we used a white noise input

signal in a system identi�cation setup with N = 10,

�2n = 10�2 and SNR = 20dB. Figure 2 shows the opti-

mal step-size sequence obtained with the algorithm de-

scribed in Table 2 and other curves from the two classes

of approximations used.

From Fig. 2, we can guess which curve to use. If we

use the least norm of the di�erence between the optimal

and the approximation sequences as a criterion to decide

which curve to implement, the chosen parameters for

this example will be �(0) = 0:93 and c = 3.

With these parameters we have run a simulation with

a �xed step-size, an optimal step-size and the two ap-

proximations. The learning curves (average of 1000

runs) are depicted in Fig. 3 where we can see that the

same fast convergence and the same small steady-state

MSE are shared by the three time-varying step-size se-

quences used. The �xed step-size was set to one and, as

expected, has the highest misadjustment.

A second experiment was carried out in order to eval-

uate the performance of this optimal sequence in case

where the input signal is correlated. The same setup was

used but with an input signal having a condition number

(ratio between the largest and the smallest eigenvalue

of the input signal autocorrelation matrix) around 180.

Fig. 4 shows us that, even for a correlated input signal,

the proposed step-size sequence has a good performance.

A �nal remark is the possibility to use an estimator for

�(k) instead of calculating ��(k) using (3) as described

in the algorithm of Table 2. We have also made an

experiment using the following estimator:

�(k + 1) = ��(k) + (1� �)e2(k) (7)

This experiment has shown us that a reasonable value

for � is around 0:96. The advantage of this alternative
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Figure 3: Learning curves for the �xed step-size, the

optimal step-size and its two approximations.

approach is the possibility of fast tracking of sudden

and strong changes in the environment. In this case,

the instantaneous error becomes high and the estimated

�(k+1) is increased such that the value of � approaches

the unity again and a fast re-adaptation starts.

When using this approach, it is worth remembering

that, since equation (4) is of the type 1 �
p
1� x, the

step-size �(k) can be written as x

1+
p
1�x

which is a nu-

merically less sensitive expression. Equation (8) shows

this expression.

�(k) =

�(k)+�(k�1)�2�2
n

2�(k�1)

1 +
q
1� �(k)+�(k�1)�2�2

n

2�(k�1)

(8)

5 CONCLUSIONS

This paper addressed the optimization of the step-size

of the BNDR-LMS algorithm when the input signal

is uncorrelated. An optimal sequence was proposed

and a simple algorithm to �nd this sequence was intro-

duced. Alternative approximation sequences were also

presented and their initialization parameters compared.

Simulations carried out in a system identi�cation prob-

lem showed the good performance of the optimal step-

size sequence as well as the possibility of using alterna-

tives sequences obtained with less e�ort and with similar

e�ciency. In another simulation it was possible to ob-

serve that the same step-size sequence, optimal for the

white noise input, can also be used in applications where

a highly correlated input signal is present.

fixed step−size sequence          
optimal sequence
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Figure 4: Comparing the learning curves for the case of

colored input signal.
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