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ABSTRACT

In this paper, we evaluate the performance limitations
of subband adaptive �lters in terms of achievable �nal
error terms. The limiting factors are the aliasing level in
the subbands, which poses a distortion and thus presents
a lower bound for the minimum mean squared error in
each subband, and the distortion function of the over-
all �lter bank, which in a system identi�cation setup
restricts the accuracy of the equivalent fullband model.
Using a generalized DFT modulated �lter bank for the
subband decomposition, both errors can be stated in
terms of the underlying prototype �lter. If a source
model for coloured input signals is available, it is also
possible to calculate the power spectral densities in both
subbands and reconstructed fullband. The predicted
limits of error quantities compare favourably with sim-
ulations presented.

1 INTRODUCTION

Adaptive �ltering in subbands is widely used for prob-
lems where an adaptive system is required to identify
very long impulse responses, since it enables to pro-
cess in decimated subbands with decreased complexity
[4, 2], which is e.g. exploited in acoustic echo cancella-
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Fig. 1: Subband adaptive �lter structure in a system
identi�cation setup.

tion. Performance characteristics of subband adaptive
�lters (SAF) as shown in Fig. 1 due to the subband
splitting have mainly been addressed in terms of con-
vergence speed. Investigations into the achievable �nal
convergence errors are mainly made in terms of trunca-
tion errors and non-causality [4, 9], while there are little
hints for the in
uence of distortions introduced by the
�lter banks [5, 8].

In the following, we discuss convergence error limits
of subband adaptive �ltering in dependency on a gen-
eralized DFT (GDFT) modulated �lter bank used for
subband decomposition, which will be brie
y reviewed
in Sec. 2. In Sec. 3, we then introduce a method to
obtain the power spectral density (PSD) of the alias-
ing terms, which sets the lower limit for the adaptation
error. This limit can be approximated by a stopband at-
tenuation measure of the prototype �lter. A second part
then discusses the error inherent in the fullband model
of the adapted subband �lters. Simulations supporting
our results are presented in Sec. 4.

2 GDFT MODULATED FILTER BANKS

2.1 Modulation

A general structure of a K band �lter bank with deci-

mation by a factor N � K is shown in Fig. 2. The anal-
ysis �lters hk[n] are derived from a real valued lowpass
prototype FIR �lter p[n] of length Lp by a generalized
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Fig. 2: Analysis and synthesis branch of a K-channel
�lter bank with subbands decimated by N .
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Fig. 3: Required frequency response of the real valued
prototype �lter p[n] for aK channel oversampled GDFT
�lter bank with decimation by N .

discrete Fourier transform (GDFT),

hk[n] = ej
2�

K
(k+k0)(n+n0) � p[n]; k; n 2 N: (1)

The term generalized DFT [1] stems from o�sets k0 and
n0 introduced into the frequency and time indices. With
k0 = 1=2, it is su�cient for real valued input x[n] to
process the �rst K=2 subbands covering the frequency
interval [0;�], while the remaining subbands are redun-
dant. Together with conditions on p[n], the time o�set
n0 can be set appropriately to ensure useful properties
such as linear phase. The synthesis �lters gk[n] can be
obtained by time reversion and complex conjugation of
the analysis �lters, i.e. gk[n] = ~hk[n] = h�k[Lp�n+1]. The
modulation approach allows for both low memory con-
sumption for storing �lter coe�cients and an e�cient
polyphase implementation [7].

2.2 Prototype Design

Through the above modulation, the �lter bank design
reduces to an appropriate choice of the prototype �l-
ter, which has to ful�ll two criteria. Firstly, the �lters'
attenuation in the stopband ranging from [�=N ;�], as
indicated in Fig. 3, has to be su�ciently large. Every
frequency of the input signal in the interval [�=N ;�] will
be aliased into the baseband after �ltering and decima-
tion, and cause a distortion of the subband signal.

A second constraint on the design is the perfect re-
construction condition. If stopband attenuation of the
prototype �lter is high enough to su�ciently suppress
aliasing, this condition reduces to the consideration of
inaccuracies in power complementarity [6]:

K�1X
k=0

jHk(e
j
)j2

!
= 1: (2)

A prototype �lter approximating these constraints can
be constructed by an iterative least-squares method [7].

3 PERFORMANCE LIMITATIONS

In this section, we derive limitations in adaptation as-
suming that the only disturbance originates from the
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Fig. 4: The identity of the structures (a) and (b) is
exploited to calculate the PSD of a decimated signal
v[m]

�lter banks employed for the subband decomposition.
First, we look at the achievable error PSD and the mean
squared error (MSE) term, E

�
e2[n]

	
, which is important

to minimize in e.g. acoustic echo cancellation. Secondly,
for system identi�cation applications, we state a limit
for the error of the identi�ed model.

3.1 PSD of Adapted Error Signal

Let us interpret the desired signal for the kth adaptive
�lter in Fig. 1 as the sum of two components,

dk[m] = sk[m] � xk[m] + zk[m] : (3)

The �rst summand re
ects the un-aliased projection of
the output of the unknown system, the desired signal
d[n] = s[n]�x[n], into the kth subband. The second sum-
mand, zk[m], represents the aliased signal components
created in the decimation stage, which can be viewed
as a distortion of the LTI system and modelled as ad-
ditive noise. Therefore, the Wiener solution of the kth
subband �lter is given by sk[m], while the unidenti�able
part zk[m] de�nes the minimumMSE (MMSE) by [3]

MMSE = E
�
z2k[m]

	
: (4)

To �nd an analytical expression for the subband MMSE,
we �rst determine the PSD of the aliased signal parts in
the subband signals, making use of two facts:

� aliasing can be conveniently pictured as a superposi-
tion of spectral intervals;

� after decimation, a previously white noise signal re-
mains still white with identical variance.

The further proceeding is depicted in Fig. 4. Assuming
the knowledge of a source modelL(ej
), which is excited
by a white noise signal u[n], the decimation by N can
be swapped with L(ej
). In each branch of Fig. 4(b)
the source model is multipied with a window qi(e

j
)
and then decimated by N . The windows have adjacent
rectangular spectra with bandwidth 2�=N each. This



decimated model is then excited by a decimated but
otherwise unmodi�ed white noise process, u[n].

When we identify v[m] in Fig. 4 with the desired sig-
nal dk[m], the source model for the kth subband Lk(e

j
)
consists of a noise shaping �lter F (ej
), which repre-
sents the source model of the input signal x[n] for ex-
citation by white noise of unit variance, the unknown
system S(ej
), and the analysis �lter Hk(e

j
),

Lk(e
j
) = F (ej
) � S(ej
) �Hk(e

j
) : (5)

The PSD of dk[m] now consists of the squared sum over
all N terms of the kth decimated source model in Fig. 4.

The squared sum of N�1 alias-only terms, de�ned
by N�1 rectangular windows q1 : : : qN�1 covering the
stopband of the kth analysis �lter Hk(e

j
), �nally gives
the PSD of the minimum error corresponding to the
MMSE,

SMMSE
ekek

(ej
) =

�����
N�1X
i=1

N�1X
n=0

Lk(e
j(
+2�n)=N )�

�qi(e
j(
+2�n)=N )

���2 : (6)

This assumes that all un-aliased signal parts in the sub-
band error signal ek[m] have been cancelled by the sub-
band adaptive �lter. Thus, due to the Wiener-Khintchi-
ne transform, the MMSE can be calculated as

MMSE =
1

2�

Z 2�

0

SMMSE
ekek

(ej
)d
 : (7)

By inclusion of the synthesis �lters Gk(e
j
), it is also

possible to derive the PSD of the reconstructed mini-
mum error signal, and state the fullband MMSE analo-
gous to (7).

Approximations. The advantage of the outlined ap-
proach is that for spectrally correlated signals, all cross-
terms in the PSDs are considered. However, for weak
spectral correlation, we may disregard the cross-terms
between di�erent aliased spectral intervals, and thus
approximate the PSDs by swapping summations and
square operations in (6). To obtain a more practical
limit for the performance of SAFs, we calculate the ratio
between the power levels of un-aliased and aliased sub-
band components, creating an SNR-like measure, which
we refer to as signal-to-alias ratio (SAR),

SAR =

R �=N
0 jP (ej
)j2d
R �
�=N

jP (ej
)j2d

: (8)

This approximation has been based on the further as-
sumption F (ej
) = S(ej
) = 1, such that (8) only de-
pends on the magnitude response P (ej
) of the pro-
totype �lter p[n]. However, the SAR measure can be
shown to yield valid results also for non-white input sig-
nals and unknown systems. Note that the denominator
of (8) is a measure of the stopband attenuation discussed
in 2.2.
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Fig. 5: Separation of system identi�cation structure for
reconstruction of equivalent fullband model.

3.2 Error of Equivalent Fullband Model

Disregarding any other limiting in
uences and assuming
adaptation e[n] ! 0 in Fig. 1, an equivalent fullband
model can be reconstructed from the adapted subband
impulse responses wk[n] by sending an impulse through
analysis bank, adapted �lters and synthesis bank. A
justi�cation is demonstrated in Fig. 5 by swapping sum-
mers for the subband errors with the (linear) synthesis
operation. Ideally, the fullband equivalent model w[n]
will match the cross-correlation function between input
and desired signal, which for white noise excitation gives
the unknown system s[n], convolved with the distortion
function t[n] of the �lter banks [8]. This distortion func-
tion characterizes the serial connection of the decimated
�lter banks in Fig. 2, x̂[n] = x[n]� t[n]. Thus, any devi-
ation from perfect reconstruction will result in an error
in the equivalent fullband model, where the accuracy
can be shown to be limited by the reconstruction error
(RE),

RE = kt[n]� �[n�Lp+1]k
2
2 : (9)

4 SIMULATIONS AND RESULTS

We perform adaptive system identi�cation in a set-up
as shown in Fig. 1 of a recursive system s[n] with two
dominant poles at 
 = 0:1� and 0:45� using an SAF
with K=2 = 8 complex subbands decimated by N = 14.
For simulation with an NLMS algorithm and strongly
coloured input signal, Fig. 6 shows the PSDs of desired
signal d[n] and �nal error e[n] after almost complete
adaptation. In contrast, the analytically calculated PSD
for the error signal at the Wiener-Hopf solution is given
in Fig. 7, overlaid with the �nal error PSD of Fig. 6.
Apart from deviations due to insu�cient convergence
at the band edges and residual peaks and a raised error
power spectrum around the positions of the dominant
poles, clearly the predicted PSD is enveloped by the sim-
ulated result, and therefore can be regarded as a lower
limit of the error PSD.

Tab. 1 compares the error limits derived in Sec. 3
with simulated results for three di�erently designed pro-
totypes, PA, PB, and PC. The design method is a least
squares minimization of stopband energy and the error
in power complementarity, which can be traded o� by
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Fig. 6: PSD of desired signal and �nal error signal;
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introducing a weighting between the two measures [7].
Tab. 1 states design results in terms of the measures RE
as de�ned in (9) and the SAR of (8) re
ecting the stop-
band attenuation.
For simulations, the set-up in Fig. 1 was employed to
identify a delay using an RLS algorithm with white
Gaussian input. The error norm of the equivalent full-
band model kw� sk22, where w is the reconstructed full-
band model according to Sec. 3.2, is given in Tab. 1,
which together with the reduction in error variance,
�2dd=�

2
ee �ts very closely the predicted values. For the

example in Fig. 6 using coloured input and a rather
complex unknown system, the MSE reduction �2dd=�

2
ee

of 56.73dB closely agrees with an SAR value of -57.01dB
for the employed prototype �lter in this case.

Analytical Prediction Simulation Results
RE SAR kw�sk22 �2dd=�

2
ee

PA -54.0821 54.9 -54.0153 54.0

PB -34.6191 65.2 -34.6143 66.2

PC -18.0016 77.8 -18.0010 78.5

Tab. 1: Predicted fullband model error and �nal MSE
compared to simulation results (all quantities in [dB]).

5 CONCLUSIONS

We have introduced measures to predict the adaptation
limits for subband adaptive �lters in terms of the �nal
MSE and the error of the identi�ed model. In case of
GDFT �lter banks, they can be expressed in terms of
the prototype �lter, and closely agree with simulation
results. For subband adaptive �lter applications these
measures provide convenient tools to design �lter banks
ful�lling pre-speci�ed performance requirements. For
applications like acoustic echo control, where the adap-
tation error is the most important issue, the banks can
be designed to be just good (and short) enough to satisfy
relaxed constraints on the model error.
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