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ABSTRACT

The purpose of the present paper is to show that the linear
phase property can be obtained with only a minor change in
the regular FLS algorithm, with no additional
multiplication, using the standard adaptation gain g(n). The
proof is based on the linearly constrained filter called
Generalized Sidelobe Canceller. Simulation results
illustrate the efficacy of the simplified algorithm.

1. INTRODUCTION

In several applications of digital signal processing
techniques, it is suitable to preserve a linear phase
characteristic of FIR digital filters. This characteristic
prevents phase distortions in the passband and can be
obtained by constraining the Z-transfer function of the filter
to a symmetrical or anti-symmetrical polynomial.

Channel equalization, system identification, frequency
estimation and line enhancement are some of the typical
applications where the linear phase property may be of
great interest. In many cases, the parameters of the filter
must be obtained by an adaptive procedure, in order to
provide useful methods for real-time operations and non-
stationary environments.

Fast Least-Square (FLS) algorithms have been proposed
in order to accomplish this objective [1,2]. The
computational complexity is proportional to the order of the
adaptive filter, but when compared with the complexity of
the classical FLS algorithm, a number of additional
operations is required to update recursively a specific
intermediate adaptation gain.

In this paper we show that the linear phase adaptive
filter can be obtained with only a minor change in the
regular FLS algorithm, using the standard adaptation gain
g(n) without additional multiplication. The proof consists
of imposing the symmetry or anti-symmetry of the filter
impulse response by means of an appropriate set of linear
constraints and using the GSC (Generalized Sidelobe
Canceller) indirect implementation structure of a linearly-
constrained filter. The effectiveness of the result is
confirmed by simulation.

2. THE LINEAR PHASE CONSTRAINED FILTER

Let us consider the system identification scheme shown in
Figure 1. All the parameters are supposed to be real. The
linearly-constrained LMS (Least Mean-Square) problem is
formulated as

minimize E{ez(n)} = E{[d(n)—x‘(n)h]z} (1)
h
subject to C'h=f, 2)
where

x(n) = [x(n), x(n— 1), x(n— N+ l)]t ,
h=[ho, iy, oo iy

and the NxK constraint matrix C and the K element
response vector f establish the linear constraint equations.

The symmetrical (+) or anti-symmetrical (-) impulse
response condition is described by

b =thy iy, (3)
for i=0, 1, -, £-1 (N even) or i=0,1 -, 5 (¥

odd). This condition can be easily reproduced by the
constraints posing:
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f=[0 ... 0] =0 (6)

in both cases. Then, on imposing C'h = f, (3) is satisfied
and the linear phase characteristic is established in the
minimization process. Now, the plus (+) or minus (-) sign
corresponds to the anti-symmetry or symmetry condition of
the coefficients, respectively.

x(n) El x(n-1) . x(n-N+1)
f ho(n) J[ h(n) ] rhm(nu

Figure 1: The constrained Wiener filter.

3. THE SIMPLIFIED FLS ALGORITHM

An alternative implementation of the linearly-constrained
filtering is represented in block diagram form in Figure 2.
This indirect structure is called the Generalized Sidelobe
Canceller (GSC) [3,4]. Essentially, it consists of changing a
constrained minimization problem into an unconstrained
form.

Figure 2: The GSC indirect structure.

The columns of the Nx(N-K) matrix C, represent a
basis for the orthogonal complement of the space spanned
by the columns of C (C'C, =0y,y_g). C, is termed the
signal blocking matrix. The (N-K)_element vector h,
represents an unconstrained adaptive filter and the fixed

-1
coefficients vector q=C(C‘C) f a nonadaptive filter

which satisfies the constraints (C'q =1 ).
Taking into account the linear phase constraints and a
signal blocking matrix given by the projection operator
-1
P=I,-C(C'C) C' (observe that C'P=0yy), the

GSC implementation turns into the form represented by
Figure 3, in that f =0.

x(n) x, (m) y(m)
N N

Figure 3: The GSC with linear phase constraint.

Nevertheless, by direct replacement of constraint matrix
C the projection operator can be rewritten as

P=1(Iy+Jy), @)
except in the anti-symmetry condition for N odd in which
P=%(IN —JN+2uu'), (8)
where
Oy
u= Lo
O(v-1)2

In Eq. (7), the plus sign corresponds to the symmetry
condition of the coefficients and the minus sign to anti-
symmetry. Thus, the block diagram in Figure 3 can be
represented in the simplified form illustrated in Figure 4.

d(n)

x(n)

Figure 4: The GSC of ﬁgure 3 employmg .

The error signal is given by
¢(n) = d(n) - h' Px(n)
=d(n)-1n' x(n)F3h' Ix(n)
= d(n) ~hppx{n), ©)
where
hyp =3[I2J]h, (10)

is the coefficient vector of the linear phase filter. Now, the
LMS problem is expressed in terms of the GSC as the
following unconstrained minimization problem:

minimize E{e2 (n)} =0+
* -1pihy F3pxadhy +

‘thde $‘2‘hLJde +
+3hiR, b, £ 1R, Jh) +

t1h{JR b +1h{JIR, Jh,, (11)



where R, is the input signal autocorrelation matrix and
P,s input-desired signal cross-correlation vector.

Taking the gradient of (11) with respect to h, and
setting it to zero yields:

IR, h, £4R, Jh, £1IR b +1IR Jh, =
Pra £IP5g (12)
Now, since JJ=1 and JR,,J=R,, (R, is a symmetric
and persymmetric matrix), it follows from (12):
Rxxh.L inth.L =Pxd i‘Ipxd
or
h, +Jh, =R31p.s R1Ipyy
=Ry Pw IR P (13)
in that JR;]J=R] (the inverse of a symmetric and
persymmetric matrix is also symmetric and persymmetric).

A careful observation of (13) reveals that h,

corresponds to the LMS optimal solution without
constraint, described by the normal equation [5,6]:

h, =R;1de- (14)
Therefore, in the adaptive context, the FLS algorithm can
be employed to update the unconstrained coefficients and
(10) to obtain the linear phase filter:

hp(iaD=2[h (e D30, (e D], (15)
where
hy(n+1)=h, (n)+gn+e, (n+1), (16)
g(n) is the adaptation gain defined by
glr) = R31 (n)x(r) an
and
e,(n+1)=dn+1)-h' (Wx(n+1). (18)

In a more appropriate form, the coefficient vector of the
linear phase filter can also be recursively computed through
the set of equations:

e(n+1)=d(n+1)-hip(n)x(n+1); (19)

hyp(n+1) =hpp(n)+4{e(n+1) £ Ig(n+1]Je{n+1). 20)

It is worth pointing out that the same result also applies
in the anti-symmetry condition for N odd [Eq. (8)]. Finally,
the simplified FLS algorithm for linear phase adaptive
filtering is summarized in Table 1.

In the case of linear phase prediction the appropriate
structure of the prediction-error filter is presented in Figure
5, in which both forward and backward prediction have
been considered. For forward prediction, the sign of x(n) in
the sum is positive, while that the sign of x(n-N+1) depends
on the symmetry (+) or anti-symmetry (-) condition. The
opposite combination [ £ x(n) e +x(n-N+1)] corresponds to
backward prediction. Since the problem is handled as a
linear phase identification filtering, the algorithm in Table I
can be directly applied. Now, the desired signal is
composed of x(»n) and x(n-N+1).

TABLE I
Simplified FLS Algorithm for
Linear Phase Adaptive Filtering

» Initialization: h;,(0)=0

> Updating:

(1) New data at time n+1: x(n+1) and d(n+1);
(2) Adaptation gain: g(n+1): FLS algorithm [7];
(3) A priori error signal:
e(n+ l) = d(n+ l) —hip(n)x(n+ 1) ;
(4) Adaptation of hyp(n+1):
i) Symmetry condition:
KD (n+1) = KD (n+1)
= h,-(LP) (n)+
+%[g, (n+1+ gN_,_l(n + 1)]e(n+ 1) ;
ii) Anti-symmetry condition:
ig‘LP)(n +1)= —hﬁ,Lf,-)_l(n +1)
_ hi(LP) (n) +

+%[gi (n+1) =gy (n+ 1)]e(n+ D;

If N is even:

i=0,1 -, N/2-1;
Otherwise:

i=0, 1, -, (N=3)/2
and

(LP) (LP)
hiv - (n+1)= hn o (n) +
+g(N_])/2(n +Deln+1).

x(n) x(n-1) x(n-N+2) x(n-N+1)
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Figure 5: The linear phase prediction-error filter.



4. SIMULATION RESULTS

In order to verify the effectiveness of the simplified
algorithm, let us consider the linear phase prediction of a
signal composed of three sinusoids in white noise. The
normalized frequencies of the sinusoids are 0.1, 0.15 and
0.4, and the sinusoid-to-noise ratio is 10 dB. A predictor of
order 6 (N=7) is used with linear phase imposition by the
symmetry of its coefficients. Concerning the FLS
algorithm, a forgetting factor #=0.99 and an initial error
energy E,=0.1 are utilized.

Figure 6 shows the evolution of the prediction error
power where we can remark the high performance of the
LS technique in terms of convergence rate. The magnitude
response of the prediction-error filter after convergence is
presented in Figure 7. Three notches are observed near the
input frequencies and the bias regarding their estimation
occurs due to the low sinusoid-to-noise ratio. Finally, the
phase response is plotted in Figure 8 where its linear
characteristic is verified. It is also interesting to emphasize
that the same results are obtained by the approach in [8] at
the expense, however, of a significantly greater
computational complexity.
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Figure 6: Evolution of prediction error power.
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Figure 7: Magnitude response.
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Figure 8: Phase response.

5. CONCLUSION

The fundamental aim of this work is to show that linear
phase adaptive filtering can be achieved with a minor
change in the classical FLS algorithm. The gain from the
simplified algorithm is significant when its complexity is
compared with other algorithms. It is can be used in a
general adaptive context of system identification or linear
prediction, where the linear phase property is desired.
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